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Introduction
Paternity analysis  is based on the evalua-

tion of the compatibility between the geno-
types of adult male individuals and the male 
genotypic  contribution  to  seeds,  and  is  the 
preferred method for  estimating pollen-me-
diated  gene  flow  in  natural  plant  popula-
tions. Tracking of pollen movements that led 
to successful fertilization of ovules provides 
an estimate of the “realized” gene flow. Pa-
ternity analysis requires the sampling of all 

males (hereafter referred to as “potential pol-
len  donors”)  within  a  defined  area  and  a 
sample of seeds collected from fruiting trees 
acting  as  pollen  traps  (hereafter  “mother 
trees”)  from the same area.  In  monoecious 
species, mother trees are also potential  pol-
len  donors.  After  genotyping  all  potential 
pollen  donors,  mother  trees  and  collected 
seeds,  the  assignment  of  paternity  can  be 
carried out  with various analytical methods 
whose pros and cons have recently been re-
viewed by Jones et al. (2010). The main aim 
of paternity analysis is to correctly identify 
the true father of any collected seed (or to 
detect immigrant pollen when no local pol-
len donor is compatible with seed genotype). 
Results  from paternity analysis  (pollen  im-
migration  rate,  distribution  of  male  repro-
ductive success and estimates of pollen dis-
persal kernel parameters) are thought  to be 
affected by the resolution of the marker set 
used and by genotyping errors  (Burczyk et 
al. 2006, Bacles & Ennos 2008).

Paternity analysis is a powerful tool for the 
study of  within-population  pollen  dispersal 
patterns.  The  short  distance  component  of 
the dispersal pattern has strong influence in 
shaping fine-scale  genetic  structure,  that  in 
turn determines the rate and direction of mi-

croevolutionary  changes  at  the  population 
level (Pluess et al. 2009). In isolated and low 
density  populations,  paternity  analysis  al-
lows to  trace pollination  events  at  a larger 
scale  (the  long  distance  component  of  the 
dispersal pattern). It  is well-established that 
forest tree pollen is able to travel hundreds 
of kilometres and evidence is accumulating 
that after such long-distance dispersal events 
pollen is viable and can successfully fertilize 
seeds  (Williams  2010,  Robledo-Arnuncio 
2010, Buschbom et al. 2011). The possibility 
of quantifying effective pollination over long 
distance has profound consequences on the 
study of  how genes  have  travelled  in  past 
and ongoing tree migrations,  and may con-
tribute  to  a  sound  forecasting  of  tree  re-
sponses to anthropogenic and natural global 
changes  (Savolainen  et  al.  2007).  In  addi-
tion,  risk assessment of pollen escape from 
GM plantation and predictions on the spread 
of invasive alien species strongly depend on 
an  accurate  estimate  of  the  long  distance 
component of pollen dispersal kernel (Willi-
ams 2005).

The impact of sampling scheme on the re-
sults from paternity analysis has received re-
latively  little  attention.  A  few  studies  as-
sessed the effects of location and number of 
seed traps and number of seeds collected in 
each trap in  classical  seed trapping experi-
ments.  Data  from these  studies  are  usually 
analyzed  following  a  backward  approach 
(so-called “inverse modeling”)  aimed at re-
constructing  the  dispersal  kernel  from  the 
spatial location and the fecundity of poten-
tial parents and the spatial pattern of seeds 
collected  from traps  (Ribbens  et  al.  1994). 
Skarpaas et al. (2005) used a simulation ap-
proach to optimize seed trap sampling design 
around  a  point  source.  They  showed  how 
traps  arranged  in  transects  and  sectors 
provide a better kernel estimation than other 
sampling  schemes.  Annuli  and  grid  arrays 
outcompeted  other  schemes  only when  the 
anisotropy of dispersal was unknown. Pielaat 
et al. (2006) found that a trade-off between 
nearby and distant sampling is needed to ac-
curately characterize the tail of the dispersal 
kernel. It is also well known that a random 
placement  of  traps  within  a  rectangular  or 
circular area determines an uneven sampling 
of distance classes, leading to the over-rep-
resentation of the intermediated ones (Ghosh 
1951).

So far, the most relevant study whose re-
sults on sampling effort can be easily exten-
ded to  the case of paternity analysis  is the 
one by Robledo-Arnuncio & Garcia (2007). 
They proposed  a  maximum-likelihood  pro-
cedure to estimate the seed dispersal kernel 
from the exact identification of seed sources, 
as in the case of parentage assignment based 
on genetic compatibility. This method (Com-
peting Sources Model - CSM) works out the 
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problem of the  uneven  distribution  of  mo-
ther-trap  potential  distances  by taking  into 
account the spatial arrangement of seed traps 
relative  to  source plants.  It  provides  better 
estimates of seed dispersal kernel parameters 
compared  to  standard  maximum likelihood 
fitting  used  in  inverse  modeling  (Roble-
do-Arnuncio  &  Garcia  2007).  Jones  & 
Muller-Landau  (2008) compared  different 
approaches to estimate dispersal kernel para-
meters  and  confirmed  that  CSM  is  among 
the most accurate and robust methods. From 
the results of simulations on different sam-
pling scenarios in Robledo-Arnuncio & Gar-
cia (2007) some practical recommendations 
on sampling effort emerged. For example, it 
was shown that fewer seeds are required to 
properly estimate the average dispersal dis-
tance  (hereafter  “δ”)  with  respect  to  the 
shape parameter (hereafter “b”) of the expo-
nential power kernel (a widely used and fle-
xible curve to describe seed and pollen dis-
persal), and that for a fixed total number of 
seeds increasing the number of traps is more 
useful than collecting more seeds per trap for 
reducing estimation uncertainty.

Sampling for paternity analysis differs sub-
stantially in the number of traps from the one 
for inverse modeling. In paternity analysis a 
large number of mother trees per population 
is rarely sampled (see for instance  Schuster 
& Mitton 2000 and  Oddou-Muratorio et al. 
2005 for  some exceptions),  whereas  in  in-
verse modeling 10 to 300 traps are usually 
placed (Stoyan & Wagner 2001, Pairon et al. 
2006, Jones et al. 2008). However, quantita-
tive  assessments  or  qualitative  indications 
about the spatial arrangement of mother trees 
and the total number of seeds, mother trees, 
and  seeds  per  mother  tree  can  seldom  be 
found in the literature on paternity analysis. 
An inadequate or insufficient sampling effort 
(too few sampled seeds and/or mother trees) 
can lead to a biased estimation of the within-
population  pollination  pattern.  In  addition, 
the lack of standard sampling methods limits 
the comparison among studies to draw gene-
ral conclusions.

In the present work we review 92 paternity 
analysis papers to provide a quantitative as-
sessment  of  the  sampling  strategy  upon 
which the estimate of pollen-mediated gene 
flow rate,  the reconstruction  of pollen  dis-
persal kernel and the description of male re-
productive  success  distribution  are  based. 
We report  data on the sampling effort  (the 
total  number of sampled seeds, the number 
of mother trees and the number of seeds per 
mother  tree)  and  discuss  possible  con-
sequences  and  limitations  in  the  sampling 
scheme on paternity analysis results.

Materials and Methods
We searched  for  published  studies  using 

paternity analysis to estimate pollen-media-
ted gene flow in forest trees. We used 3 dif-

ferent databases (Google ScholarTM, ISI Web 
of  ScienceTM and  ScopusTM)  for  surveying 
the literature. The key-words used were: pa-
ternity analysis,  tree*, pollen,  genetic* and 
gene  flow.  We also  tracked  references:  (i) 
within  the  articles  found;  (ii)  from review 
papers on gene flow in forest trees (Burczyk 
et al. 2004, Ashley 2010); (iii) from Table 4 
in  Bittencourt  & Sebbenn (2007);  and  (iv) 
from Appendix A-1 in  Wang et al. (2010a). 
Studies  based  on  both  mating  models  (as 
MLTR - Ritland 2002) and pollen pool hete-
rogeneity (as KINDIST - Robledo-Arnuncio 
et al. 2007) were excluded since they require 
only to  genotype  seeds (and  mother  trees). 
Studies  based  on  methods  such  as  MLTR 
(Ritland 2002) and KINDIST (Robledo-Ar-
nuncio et al. 2007) were excluded since they 
require  only to  genotype  seeds and mother 
trees. Moreover, we did not consider a few 
studies for which we were unable to obtain 
the full-text. Since the focus of our paper is 
on  the  sampling  strategy,  studies  based  on 
previously  published  data  or  metanalyses 
were also excluded in order to avoid dupli-
cates. We included paternity studies carried 
out  in  seed orchards and studies  investiga-
ting gene flow among closely related species 
(e.g., Quercus spp.).

For each selected paper we recorded:
• information on sampling strategy: the total 

number  of sampled seeds,  the number of 
mother  trees  and  the  average  number  of 
seeds per mother tree;

• characteristics  of  the  studied  population: 
number of potential pollen donors, number 
of  potential  pollen  traps  (female  indivi-
duals in the population for dioecious spe-
cies), area, tree density;

• the  studied  species,  its  family  and  taxo-
nomic group, breeding system and primary 
pollination vector;

• the method and molecular markers used for 
paternity assignment.
In monoecious species the number of male 

individuals is equal to the number of female 
individuals.  Whenever  life  history  traits 
could not  be found in the text,  we tried to 
gather them from other sources (e.g., on-line 
databases),  or in  some cases from personal 
communications  with  the  Authors.  When 
density was not available in the text it was 
inferred dividing the number of individuals 
within  the  study  population  by  the  stand 
area. As a general rule, papers either provi-
ding  a  poor  description  of  the  sampling 
design or lacking many essential  data were 
excluded from our dataset.

In papers with multiple stands (e.g., when a 
system  of  several  forest  fragments  is  stu-
died),  data  were  collected  for  every  stand 
where at least one seed was genotyped to es-
timate the pollen-mediated gene flow charac-
terizing that stand (or a group to which the 
specific  stand  belongs  as,  for  instance,  in 
Lander  et  al.  2010).  In  studies  where  the 

same  stand  was  analyzed  in  two  or  more 
consecutive years, if data on sampling effort 
were  reported  for  each  year  and  they 
differed, we considered each year as an inde-
pendent data point.

As for studies carried out in seed orchards 
or  for  species  that  reproduce  vegetatively, 
the number of  ramets was taken as the num-
ber of individuals, since ramets (rather than 
genets)  represent  spatially  distinct  pollen 
sources.

Results and Discussion

General contents and sources
We collected  data  from 92  papers  publi-

shed from 1992 to September 2011. Among 
them, 14 were also present in Burczyk et al. 
(2004) and 27 in Ashley (2010). In the latter 
work,  the literature search was only on na-
tive plants (cultivated trees and crops were 
excluded)  and  microsatellite-based  studies, 
but experiments based on parentage analysis 
were  also  taken  into  account.  The  author 
stated that her search was not exhaustive, but 
“broadly inclusive and representative”.

The number of papers published  per year 
increased  until  2008,  followed  by  a  slight 
decrease in the following years. The general 
growing  trend  seems related  to  the  increa-
sing  availability  of  microsatellite  markers 
and to the development of methods based on 
maximum likelihood  assignment  of  patern-
ities  (Fig.  1). The  most  used  methods 
(simple exclusion - SE, neighborhood model 
- NM, and maximum likelihood - ML) have 
similar sampling requirements. The main dif-
ference concerns  the spatial  distribution  of 
pollen donors to be sampled. As for SE and 
ML-based  studies,  all  potential  pollen  do-
nors within the sampling area must be sam-
pled, whereas for NB-based studies sampling 
is carried out within circular areas of a given 
radius surrounding n mother trees.

Few studies  performed  paternity  analysis 
using multiple analytical methods (n=8, 9%). 
The use of multiple  approaches for  the es-
timation of gene flow rates has been recently 
proposed  to  overcome  possible  drawbacks 
related  to  specific  methods  and/or  weak-
nesses  due  to  low-resolution  marker  sets 
(Bacles & Ennos  2008,  Jones et  al.  2010). 
Almost  half  the  papers  (47%)  were  pub-
lished in only 4 journals, with  Heredity and 
Molecular  Ecology clearly representing  the 
preferred  journals  for  gene  flow  studies 
based  on  paternity  analysis  (respectively, 
15% and 14%), followed by Forest Ecology 
and  Management  and  Conservation  Gene-
tics (Fig. 2).

Studied species and sampling areas
The collected papers covered a total of 81 

different species. Most studies (n=75, 81%) 
were  conducted  on  Angiosperms,  whereas 
only 17  studies  focused  on  Gymnosperms. 
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Fagaceae  (16)  and  Pinaceae  (12)  were  the 
most represented families and, together with 
Fabaceae and Dipterocarpaceae, represented 
the studied species in almost half of the col-
lected papers. Overall, species from 30 dif-
ferent families were studied. The large num-
ber  of  gene  flow papers  on  Fagaceae  was 
also reported by Ashley (2010). With regard 
to the primary pollination vector, there were 
46  studies  on  insect-pollinated  species 
(50%), 38 on wind-pollinated species (41%), 
while in the remaining 8 articles the studied 
species relies on mammals, birds, or multiple 
vectors for pollination.

We obtained 187 data points from the 92 
collected  papers  (see  Appendix  1).  Fifty-
eight  papers  (63%)  investigated  a  single 
stand, providing a single data point. Papers 
with  more  than  one  data  point  were  fairly 
frequent (n=34, 37%). In general, this is due 
to the analysis of multiple stands within the 
same  article.  Wang  et  al.  (2010b) studied 
pollen-mediated gene flow in 28 fragments 
of  Pinus  tabulaeformis in  an  urban  land-
scape. According to our criteria, we retained 
25  data  points,  the  largest  number  of data 
points  from a  single  study  in  our  dataset. 
Also  Lander et  al.  (2010) sampled  a  large 
number of forest fragments to estimate pol-
len  immigration,  but  only  a  half  of  them 
matched  our  criteria,  providing  13  data 
points. On the other hand, 11 papers inves-
tigated  gene  flow  in  the  same  stand  over 
multiple  years  (usually,  2  or  3  consecutive 
years).  Irwin  et  al.  (2003) highlighted  that 
single-season  studies  may not  capture  tem-
poral  variability  in  pollen  exchange,  espe-
cially  in  perennial  plants  where  flowering 
does not  occur  every year.  Therefore,  mul-
ti-year  analyses  were advocated for  obtain-
ing  accurate  estimates  of  pollen-mediated 
gene flow patterns.

In  general,  our  knowledge  on  pollen-me-
diated gene flow for a species is based on a 
single study. Only 14 species were analyzed 
in more than one paper.  Quercus robur  was 
investigated  in  three  papers,  while  Arau-
caria  angustifolia,  Cryptomeria  japonica, 
Eucalyptus grandis,  Eurycorymbus cavaler-
iei,  Fagus  sylvatica,  Picea  abies,  Populus  
nigra,  Prunus  avium,  Pseudotsuga  men-
ziesii,  Q.  macrocarpa,  Q. salicina,  Shorea  
leprosula and  Sorbus  torminalis were  stu-
died  twice.  The  lack  of  independent  esti-
mates, along with the usually low degree of 
comparability  among  pollen-mediated  gene 
flow studies, makes generalization on single 
estimates  far-fetched.  Studies  designed  for 
allowing  meaningful  comparisons  among 
gene flow rates estimated in different ecolo-
gical  conditions  are  also  rare.  The  impor-
tance of such comparative studies in charac-
terizing the pollen dispersal  capability of a 
species is discussed in Piotti et al. (in press).

The  median  area  of  the  118  stands  for 
which we found sufficient  information was 
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Fig. 2 - Number 
of studies publi-
shed per journal. 
Journals with 
only 1 published 
study were 
excluded.

Fig. 1 - Number of published studies per year. Different colors represent: (a) different me-
thods in the analysis of paternity data; and (b) different molecular markers. In papers based  
on  maximum likelihood  methods,  data  analysis  was usually performed by the CERVUS 
(Kalinowski et al. 2007) and FaMoz (Gerber et al. 2003) software. In papers based on the 
neighbourhood model, data analysis was usually performed according to the methods presen-
ted in  Burczyk et al. (2002) - implemented in the NM+ program by  Chybicki & Burczyk 
(2010a) - and Oddou-Muratorio et al. (2005).
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7.42 ha. Small stands (≤ 1 ha) are fairly com-
mon (24%). Two thirds were smaller than 20 
ha, whereas larger stands (≥ 100 ha) are rare 
(8%).  This  pattern  is  likely determined  by 
the rapid increase in  sampling and genoty-
ping  effort  with  size  of  the  sampled  area. 
Studies on large areas are suitable for the de-
tection of rare long-distance dispersal events, 
though they are feasible only when species 
are present at low density.  However,  Hardy 
(2009) pointed  out  that,  despite  their  great 
importance,  the  measures  of  dispersal  ob-
tained in  such studies  might not be repres-
entative  of  species  with  similar  pollination 
syndrome  at  higher  densities.  Comparying 
two natural  Populus trichocarpa stands dra-
matically different as for density (993 vs. 0.2 
males  km-2)  and  area  (19.6  vs.  31400  ha), 
Slavov et al. (2009) found large differences 
in pollination patterns, although the authors 
themselves  warned  about  the  difficulty  of 
comparing such different areas. Piotti  et al. 
(in press) compared two close  Fagus sylva-
tica stands  with  regular  densities  characte-
rized  by  different  management  regimes. 
They found a more skewed pollen dispersal 
distance  distribution  in  the  managed  area 
whose density is about one-third of the un-
managed one (57  vs. 163 trees ha-1).  Infor-
mation on the size of sampling areas can also 
be useful to understand if limits in sampling 
scale may downwardly bias dispersal range 
estimates. Nonetheless, heterogeneity of ex-
perimental setups and methods used, as well 
as variation in population densities, pollina-
tion  syndromes,  pollen  terminal  velocity, 
stand isolation, etc. should be carefully taken 
into account in data collection and analysis 
for  future  works  on  this  topic.  However, 
methods  to  estimate  dispersal  parameters 
taking advantage of spatially censored data 
(Jones et al. 2008) or assuming the immigra-
tion rate to be a function of dispersal kernel 
(Goto et al. 2006) are already available but 
rarely  applied.  These  approaches  allow  to 
take into account immigration events of un-
known  origin  in  the  estimation  of  the  dis-
persal curve, usually resulting in a substan-
tially higher mean dispersal distance (Piotti 
et al. 2009, Chybicki & Burczyk 2010b).

Sampling strategy
In  any  of  the  papers  collected  for  this 

study, we found neither exhaustive justifica-
tions for the sampling strategy adopted, nor 
references to any guideline for sampling stra-
tegy. An exception was the paper by Oddou-
Muratorio et al. (2005), who stated that “the 
objectives for both years were to sample all 
possible distances between mother trees, and 
to maximize the number of mother trees in 
the middle  part  of the study site”.  A para-
graph  in  their  discussion  focused  on  the 
methodological insights for the estimation of 
the dispersal kernel. Many papers reported a 
map of the sampling area showing the loca-

tion  of  adult  individuals  with  mother  trees 
indicated by different symbols (e.g., Oddou-
Muratorio et al. 2003, Nakanishi et al. 2004, 
Curtu et al.  2009). Based on visual inspec-
tion of these maps, no clear patterns in the 

choice  of  mother  trees  can  be  recognized. 
Their  location  varied from clustered in  the 
centre  of the  stand  to  scattered throughout 
the entire sampling area. We did not find any 
statement about a random choice of mother 
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Fig. 3 - Distribu-
tions of the number 
of mother trees (x-
axis) and number of 
sampled seeds per 
mother tree (y-axis) 
in log scale. White 
dots represent the 
187 data points col-
lected for this study.

Fig. 4 - Distribu-
tions of (a) the total 
number of seeds, 
and (b) the percen-
tage of trap coverage 
characterizing the 
187 data points.



Sampling strategy in paternity analysis 

trees in the collected papers. Given this lack 
of indications and our experience on the dif-
ficulties in sampling seeds from forest trees, 
we feel that such diverse sampling schemes 
might arise from practical constraints rather 
than a thorough a priori evaluation. As poin-
ted  out  in  methodological  papers  on  seed 
dispersal modeling, intuitively designed ex-
periments are likely to lead to incomparable 
and  non-representative  results  (Willson 
1993, Stoyan & Wagner 2001).

Besides  the  spatial  positioning  of  mother 
trees, the other crucial factor in designing a 
solid sampling scheme for paternity analysis 
is  the  sampling  effort,  represented  by  the 
total number of sampled seeds (i.e., number 
of mother trees x number of seeds per moth-
er tree). In the collected papers, we found a 
median number of 8 mother trees (mean = 
11.3 ± 13.6 SD -  Fig. 3), 29 seeds per mo-
ther tree (mean = 45.6 ± 74.7 SD -  Fig. 3) 
and 240 total sampled seeds (mean = 356.1 ± 
423.1 SD - Fig. 4a). These values are lower 
than  those  usually  found  in  classical  seed 
trapping studies. This difference is likely to 
depend on the need for larger samples to in-
fer dispersal kernel’s parameters without ge-
netic data and, on the other hand, on the sig-
nificant investment of time and resources to 
collect genetic data (Jones & Muller-Landau 
2008). As a measure of the coverage of po-
tential pollen traps in a stand (trap coverage) 
the ratio of mother trees over the total num-
ber of female trees was calculated. The me-
dian value of trap coverage was 0.18 (mean 
= 0.28 ± 0.27 SD - Fig. 4b). The above para-
meter was not  correlated with  tree density, 
but it negatively depends on the total number 
of female trees, indicating that trap coverage 
is more exhaustive in small populations. The 
low trap coverage in large stand studies can 
be related to practical and economic limita-
tions.  Nevertheless,  a sufficiently high  trap 
coverage is desirable to decrease confidence 
interval of parameter estimates and increase 
comparability  among  results  from different 
experiments.

Our data on the distribution of sampling ef-
fort in published paternity analyzes are com-
parable with the ones from Robledo-Arnun-
cio & Garcia (2007), though their work was 
focused on studying seed dispersal with seed 
trapping and genetic data. By using a simula-
tion  approach,  they tested  the  performance 
of  the  CSM by randomly placing  20,  100 
and  200  traps  in  a  squared  area,  and 
sampling 1 to 50 seeds per trap (total num-
ber  of  sampled  seeds:  200-1000).  They 
found that the CSM performs well in the es-
timation of the  δ parameter even for a rela-
tively small number of seeds (200), whereas 
≥ 500 seeds are needed to obtain an accurate 
estimate of the  b parameter of the dispersal 
kernel. As the authors noted, the b parameter 
is more sensitive than the δ parameter to de-
creasing  number  of  total  seeds  and  seed 

traps.  The  minimum number  of  traps  they 
simulated  was 20,  that  is  low for  classical 
seed  trapping  experiments  (being  therefore 
adequate for the aims of their paper), but al-
most  double  the  mean  number  of  mother 
trees in paternity studies. Among the few in-
dications in the literature about sampling ef-
fort  in paternity analysis,  Oddou-Muratorio 
et al. (2005) noted that increasing the num-
ber  of  mother  trees  from 14  to  60  (in  the 
same area in two consecutive years) sensibly 
reduces the confidence interval of the para-
meters of the dispersal kernel. On the other 
hand, the authors pointed out that sampling a 
high number of seeds per mother tree, that 
usually  limits  the  number  of  mother  trees, 
could be more adequate for the estimation of 
individual  selfing  rates.  This  implies  that 
sampling  strategy  in  paternity  analysis 
should  be  fine-tuned  to  meet  the  specific 
aims of an experiment.

Conclusions
Although some results on the consequences 

of different sampling schemes are available 
for seed trapping studies (with or without ge-
netic assignment  of seeds),  the  case of pa-
ternity  analysis,  usually  based  on  a  lower 
sampling effort,  is poorly investigated.  Our 
data collection from the literature on pater-
nity analysis in forest trees showed a poten-
tial  lack of knowledge  about  the effects of 
low  numbers  of  mother  trees,  seeds  per 
mother tree and total  sampled seeds on es-
timates  usually  obtained  to  describe  with-
in-population pollination patterns: (i) pollen 
immigration; (ii) male reproductive success; 
and (iii)  parameters  of the pollen  dispersal 
kernel. Only in 29 out of the 187 collected 
data  points  (15%)  the  number  of  mother 
trees is higher than 20, the lowest number of 
traps taken into account by Robledo-Arnun-
cio  &  Garcia  (2007).  This  means  that  for 
85% of  our  collected  data  points  we  have 
little idea about how accurate and precise the 
estimates  from  paternity  analysis  can  be. 
From Table 2 in  Robledo-Arnuncio & Gar-
cia  (2007) we  know that  the  relative  root 
mean square error (RMSE - a measurement 
of both accuracy and precision of an estimate 
normalized to  the expected value) is ~0.04 
for the δ parameter and ~0.10 for the b para-
meter  when  500  seeds  were  sampled. 
RMSEs increased to  ~0.  07 and ~0.17,  re-
spectively,  when the total  number of seeds 
decreased  to  200.  Errors  roughly  increase 
with  the  inverse  of  the  square  root  of  the 
total number of seeds sampled, as expected 
from  classical  statistical  theory.  Con-
sequently, when the sampling effort is scarce 
non negligible errors in estimates are expec-
ted,  in  particular  for  the  b parameter.  Le-
onarduzzi et al.  (in preparation), relying on 
the distribution of sampling effort presented 
here,  explore  the  consequences  of  realistic 
sampling strategies on the reconstruction of 

different  dispersal  kernels  to  provide  the 
basis for meaningful guidelines for paternity 
analysis.
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