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Introduction
Mechanistic  modelling  is  an  increasingly 

popular method of tracking carbon fluxes in 
forest ecosystems, important  for carbon ba-
lance studies,  climate and pollution  studies 
and  others.  Properly  calibrated  and  vali-
dated, such models can also be used as dia-
gnostic  tools,  to  separate  the  influence  of 
forest  growth  impactors  such  as  climate 
change and Nitrogen deposition (Eastaugh et 
al.  2011). Such models have however been 
sometimes criticised in  the past  for  a  poor 
representation  of forest  mass growth  (Ren-
nolls et al. 2007,  Pretzsch et al. 2008). This 
paper presents part of a wider study that will 
compare  aboveground  biomass  estimates 
obtained  with  the  BIOME-BGC  model 
(Thornton  1998,  Pietsch  et  al.  2005)  with 
field data from the Austrian National Forest 
Inventory (Gabler  & Schadauer  2006).  We 
detail  here  the  methodology  developed  to 
estimate  forest  management  activities  that 
may have occurred prior to the starting date 

of the available inventory data.
BIOME-BGC  simulates  fluxes  and  pools 

of  carbon,  water  and  nitrogen,  beginning 
with  a  spin-up  run  of  many forest  growth 
cycles, to estimate a natural forest stand for 
the site without human influence (Pietsch & 
Hasenauer 2006).  We follow this with two 
cycles of clear cutting to represent early in-
dustrial  forest  use  in  Central  Europe,  with 
the final start date of the present forest esta-
blished in accordance with the mean forest 
age for each site from the NFI data. In mana-
ged forests it is likely that some biomass re-
movals  have occurred  in  the current  forest 
rotation, but if these were prior to the com-
mencement of the inventory programme then 
the timing and extent  of those thinnings is 
unknown.  As forest  management  is  one  of 
the major influences on forest carbon fluxes 
and pools  (Rypdal & Baritz 2002,  Jandl  et 
al. 2007, Lindner et al. 2008), this represents 
a potentially serious source of uncertainty or 
bias in model outputs (Zaehle et al. 2006). In 

a  recent  Europe-wide  comparison  of  forest 
models,  Tupek et al. (2010) did not include 
management  in  their  BGC  simulation,  yet 
recognise management as a major factor.

Direct  site-by-site  comparisons  of  model 
outputs with inventory measurements is dif-
ficult,  due  to  the  fundamentally  different 
approaches to scale. Models assume homo-
geneity  at  the  scale  of  their  input  data 
(Landsberg et  al.  1991),  where single  sites 
are assumed to be representative of a broader 
area. Inventories on the other hand are a sta-
tistical  measure,  designed  so  that  a  large 
number  of results  are aggregated to  give a 
mean figure for a region or strata. Although 
at a broad scale the results should be com-
parable,  individual  site-by-site  comparisons 
are likely to have little meaning. In terms of 
using inventory data for model initialisation 
and validation, this means that some liberties 
must be taken with  the strictly mechanistic 
operation of biogeochemical process models, 
as a large component of random error in the 
individual  plot  observations must be incor-
porated.

National forest inventories (NFIs) contain a 
vast body of information, however the use of 
this  data  for  research  purposes  has  to  date 
been limited (Nabuurs et al. 2010), and few 
biogeochemical analyses have been applied 
to  inventory data  (Purves  & Pacala  2008). 
This is likely due to two complications, the 
first  to  do with  the data  needs of complex 
biogeochemical models and the second with 
the  statistical  nature  of  forest  inventories. 
Comprehensive inventories such as the Aus-
trian NFI (Gabler & Schadauer 2006), spe-
cies-specific model parameterisation (Pietsch 
et al. 2005) and modern spatial interpolation 
methods (Petritsch & Hasenauer 2007) may 
fulfil most of the data needs, but the uncer-
tainty  of  prior  management  activities  re-
mains.

Comparison  of  biogeochemical  modelling 
and inventory results in managed forests re-
quires  solving  two  simultaneous  problems: 
the  statistical  uncertainty  of  the  inventory 
data at the plot scale and the lack of know-
ledge of historical management. Our appro-
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Mechanistic modelling is an important tool for understanding the impacts of cli-
mate change and pollutants on forest growth. One of the common practical 
limitations of these models is a lack of specific information regarding manage-
ment activities such as thinning or harvesting, which can have a very strong in-
fluence on the accuracy of results. The use of inventory data for model para-
meterization and calibration is also problematic, as inventories are designed to 
have large volumes of data amalgamated to give accurate mean results across 
large  areas.  The precision of  single  point  estimates  is  often quite  low.This 
study uses BIOME-BGC to model forest growth on 1133 sites of the Austrian Na-
tional Forest Inventory, and develops a method to estimate timber removal 
patterns prior to the commencement of record keeping on the sites. Recogni-
zing the poor precision of individual point estimates in the data, we do not 
seek to precisely calibrate the model to the data on each point. Rather, we 
assume that the point-wise inventory estimates will  be normally distributed 
around the true values. We then model each site assuming no management 
interventions, and compare this with inventory results. Plotting the “error” 
between model results and NFI data shows a strong right-skew, reflecting the 
modelled lack of timber removals. A Box-Cox transformation of the error plot,  
centred on zero, would represent an unbiased model estimate of the data, 
thus we can determine the historic timber removals as the difference between 
the original error curve and its Box-Cox transformation. Calibrating the model 
with this information allow us to represent forest volume with greater accu-
racy than would otherwise be possible.
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ach in this paper is to assume that the errors 
in  a sophisticated NFI and a mature,  well-
tested  model  will  both  be  normally distri-
buted around zero, and thus, if assumptions 
of plot management history are correct, the 
site-by-site  disagreements  between  the  two 
approaches will also be normally distributed 
around zero.

Data and methods
The  Austrian  National  Forest  Inventory 

(Gabler & Schadauer 2006) is organized into 
tracts  each  of  4  points  on  a  200m square. 
5600  such  tracts  are  arranged  in  a  square 
grid  pattern  across  the  country,  including 
over areas that are not currently forested. An 
angle-count with a basal area factor of 4 is 
performed on each point, recording all trees 
of over 10.5cm dbh. A fixed-area plot of ra-
dius  2.60  metres  is  installed  to  record  all 
trees  of  dbh  between  5.0  and  10.5cm. 
Twenty percent of plots were measured each 
year, and re-measured after 5 years. Timber 
volumes are calculated here from measured 
diameters  and  heights  using  the  allometric 
equations of Pollanschütz (1974). Using one 
point  from  each  forested  tract,  a  total  of 
2224 points is obtained. We use here a sub-
set of the database for the measurement pe-
riods  1981-85  and  1986-91,  and  limit  the 
analysis to those plots with forest present in 
both periods, a species homogeneity of over 
80  percent  by basal  area  and  less  than  30 
percent  timber  removal  from  the  plot 
between  the  measurement  periods,  as  our 
current  version  of  BIOME-BGC  has  not 
been tested for mixed-species forests and a 
major  removal  within  the increment  period 
could  confuse  the  results.  This  limits  our 
analysis to 1133 plots.

Separate  species  parameterisations  are 
available  for  Norway spruce  (Picea  abies) 
depending on site elevation above or below 
1000m asl  (Pietsch  et  al.  2005),  but  as no 
parameters are available for Silver fir (Abies  
alba) these were modelled as low elevation 
spruce  giving  a  total  of  386  plots  (354 
spruce  dominated,  32  fir)  in  this  group. 
Some 439 plots were high elevation spruce, 
80 Pinus (67 Scots pine Pinus sylvestris and 
13  Pinus nigra),  47 Larch (Larix decidua), 
28 combining Oak (Quercus robur/petraea) 
and  Ash  (Fraxinus  excelsior),  146  beech 
(Fagus sylvatica) and other broadleaves and 
seven stone pine (Pinus cembra).

BIOME-BGC is  a  mechanistic  model  de-
veloped to simulate the ecosystem processes 
of  a  forest  stand  on  a  daily timestep.  Sto-
rages and fluxes of water, carbon and nitro-
gen are tracked throughout various pools in 
the vegetation, litter, and soil. The model has 
been widely applied across a range of fore-
sted ecosystems around the world, has been 
extensively  compared  with  flux  measure-
ments  (Schimel  et  al.  2000),  and  was spe-
cifically  parameterized  and  validated  for 

major central European species by Pietsch et 
al.  (2005). Norway spruce in particular has 
been  widely  studied  with  BIOME-BGC 
(Cienciala  & Tatarinov  2006,  Lange  2007, 
Petritsch et al. 2007,  Jochheim et al. 2009), 
giving confidence that the model can accu-
rately represent spruce growth across a range 
of  different  circumstances.  Forest  mana-
gement operations were included in BIOME-
BGC by  Cienciala & Tatarinov (2006) and 
Petritsch et al.  (2007),  based on prescribed 
management regimes.

Net primary production of the 1133 plots 
in our dataset is simulated using the Austrian 
incarnation  of the DAYMET climate inter-
polation  (Petritsch  2002,  Eastaugh  et  al. 
2010).  Species  and  age  information  is 
obtained  from  the  NFI,  and  other  inputs 
comprise of an interpolation of Austrian soil 
data (Petritsch & Hasenauer 2007), a 1 km² 
nationwide  raster  of  nitrogen  deposition  in 
1995 (Pötzelsberger 2008) and species-spe-
cific parameters determined by Pietsch et al. 
(2005). BIOME-BGC operates by simulating 
the  development  of  an  unmanaged  forest 
over many centuries, until a point where car-
bon pools are meta-stable over the course of 
successive mortality cycles (Pietsch & Hase-
nauer 2006). This is followed by two cycles 
of  clearcutting  and  replanting  to  simulate 
early-industrial forest exploitation in Central 
Europe, and the planting date for the current 
stand is determined from the NFI data.

The primary output of BIOME-BGC is net 
primary production (NPP). Internal routines 
allocate  this  in  fixed  proportions  to  the 
various tree compartments, of which we are 

here interested in aboveground wood carbon. 
Without  consideration  of  current  rotation 
management, the model output would apply 
to  a potential,  unmanaged forest  condition. 
In most cases this gives a biomass estimate 
substantially  higher  than  the  recorded  data 
from the NFI. At the plot level the NFI data 
is  extremely imprecise,  so a four  step pro-
cedure  was  developed  to  determine  the 
appropriate removal assumptions to include 
in the modelling. These assumptions are then 
used in a second simulation of forest growth 
to determine final results (Fig. 1).
(1)  The true  standing  biomass in  Period  1 
was estimated as the mean of the NFI results 
for Periods 1 and 2, less half of the plot in-
crement calculated from the NFI data using 
the “Starting Value”  method (Grosenbaugh 
1958,  Schieler  1997).  This  “temporal  ave-
raging” reduces some of the extreme varia-
bility  in  single-point  angle  count  measure-
ments (Eastaugh & Hasenauer 2010).
(2) The “unmanaged” model outputs may be 
compared with the estimated Period 1 bio-
mass, and the mismatch (“error”) calculated. 
A  density  plot  of  this  mismatch  shows  a 
strong right-skew (most BGC estimates were 
much too  high,  fewer were too low).  Plots 
were  then  stratified  by  dominant  species 
group  and  data/model  mismatches  calcu-
lated.
(3)  We assume that  the mismatch  between 
the NFI biomass estimations and the model 
outputs  should  be  normally  distributed.  A 
Box-Cox power transformation (Box & Cox 
1964) was applied to the mismatch data for 
each species group, and the thinning require-
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Fig. 1 - Schematic diagram of modelling procedure. The first run of the BIOME-BGC model 
is conducted without any management assumptions. From the comparison of those outputs 
with the measured standing volumes from the National Forest Inventory,  it is possible to 
estimate the management history on each site. This information is then applied in the second 
run of the model.
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ment  for  each  plot  calculated  as  the  diffe-
rence between the mismatch curve and  the 
transformed curve, centred on zero (Fig. 2), 
less  a  minor  adjustment  to  compensate  for 
the extra soil nitrogen use in a thinned stand.
(4) Removals calculated in step 3 are model-
led as thinnings taken place some time prior 
to  Period  1  (although  they  also  may have 
been partial  harvests or  significant  disturb-
ance events).  To avoid these having a bio-
physical impact on modelling post-Period 1 
due  to  increased  nitrogen  consumption  by 
soil bacteria, we apply a series of steps to de-
termine reasonable assumptions for the tim-

ing of the removals.
(a) If the stand is over 50 years old, first re-

moval is assumed to be at age 40 (Petritsch 
2008).

(b) If insufficient biomass can be removed in 
a single step (required removals are greater 
than  modelled  standing  biomass),  sub-
sequent  removals  occur  at  ages  70,  100 
and 130 and 5 years prior to the Period 1 
inventory date.

(c) If a subsequent  removal is required,  the 
prior  removal  is limited to  40  percent  of 
biomass.

(d) A maximum of 95% of biomass may be 

removed in the final step.
To convert biomass figures to more readily 

visualised timber volume per hectare values, 
we compiled a regression of all 33 779 tree 
measurements in the available dataset, calcu-
lating  conversion  factors  between  biomass 
estimates made with allometry and biomass 
expansion  factors  developed  for  Central 
European species (Lexer,  pers. comm. - 10 
February  2010)  and  merchantable  timber 
volume  estimates  consistent  with  Pollan-
schütz  (1974) -  Tab.  1.  All  species are in-
cluded here, as some of our 1133 plots con-
tained a minor component of other species. 
It should be noted however that for species 
other  than those in our  major groups often 
few data points  were available for the bio-
mass/timber volume regression, and thus the 
multipliers may be unreliable for those spe-
cies. The Lexer equations were used for con-
sistency with  concurrent  studies  (WAMOD 
2010), as the only available comprehensive 
estimates for Austrian conditions.

Given  the  very  poor  precision  of  angle-
count estimates of volume on single points, a 
regression  of  observed  versus  predicted 
standing volume is inappropriate. We there-
fore apply the methods of  Bland & Altman 
(1986),  which  for  each  data  point  plot  the 
difference  between  values  determined 
through each method against their mean for 
each point.

Results and discussion 
The initial  simulation of forest growth on 

the  NFI  plots  was  performed  without  any 
management interventions. A comparison of 
model outputs with observed data displayed 
a  remarkably even  normal  curve  for  those 
plots  where  the  model  appears  to  under-
estimate the NFI (the blue line below zero in 
Fig.  2).  This gives some confidence that  if 
management were appropriately considered, 
the  variation  between  the  simulations  and 
the NFI data would also be normally distri-
buted for apparent overestimations.

Overall,  the procedure enabled a close si-
mulation of standing volume (Fig. 3). Some 
problems  exist  with  the  Larch  simulation, 
probably due to poor species data resulting 
from the low number of samples used in the 
initial species parameterisation (Pietsch et al. 
2005, Pietsch, pers. comm. - 25 June 2010). 
Results  for  the  Oak/Ash  and  Stone  Pine 
groups  are  rather  uncertain  due to  the low 
numbers of plots available in this study for 
those species. The Bland-Altman plots (Fig.
4) show that  the errors  are  consistent  over 
the  range  of  standing  volumes,  with  little 
evidence of heteroscedasticity.

The  Lexer  biomass  equations  are  based 
only on dbh. Several authors have presented 
allometry for major European species in dif-
ferent regions (Joosten et al. 2004 and Wutz-
ler et al. 2008 for  Fagus sylvatica,  Wirth et 
al. 2004 for Picea abies and Cienciala et al. 
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Tab. 1 -  Multipliers  for  conversion  of above-ground woody biomass (kg/m2)  to  volume 
(m3/ha) consistent with Pollanschütz (1974).

Species Multiplier Species Multiplier
Spruce (Picea abies), low eleva-
tion

18.91 Chestnut (Castanea sativa) 12.31

Fir (Abies alba) 18.28 Black Locust (Robinia  
pseudoacacia)

11.11

Larch (Larix decidua) 21.46 Sorbus/Prunus spp. 9.94
Scots Pine (Pinus sylvestris) 22.12 Birch (Betula spp.) 11.01
Black Pine (Pinus nigra) 18.29 Black Alder (Alnus glutinosa) 16.93
Stone Pine (Pinus cembra) 7.45 White Alder (Alnus incana) 10.66
Douglas Fir (Pseudotsuga men-
ziesii)

6.25 Linden (Tilia cordata) 15.01

Other conifers 6.81 Aspen, Poplars (Populus spp.) 13.74
Beech (Fraxinus excelsior) 13.17 Black Poplar (Populus nigra) 12.58
Oak (Quercus robur/petraea) 12.53 Hybrid Poplars (Populus x spp.) 11.83
Hornbeam (Carpinus betulus) 11.61 Willow (Salix spp.) 8.95
Ash (Fraxinus excelsior) 13.61 Other broadleafs 9.06
Maple (Acer spp.) 11.41 Spruce, high elevation 15.9
Elm (Ulmus spp.) 11.53 - -

Fig. 2 - Relationship of model output to NFI data, by plot. The original “error” curve (closed 
symbols,  dark  blue)  shows  a  clear  positive  skew,  reflecting  a  model  overestimation  of 
volume with no assumed thinnings. Applying a Box-Cox power transformation to this curve 
increases the normalcy of the error distribution (open symbols, pink). The required thinning  
for any plot (in m³/ha) is the lateral distance between that plot’s corresponding points on the  
two curves. Note that the transformed curve has been scaled vertically down for this figure, 
to increase the clarity of the concept.
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2006, 2008 for Pinus sylvestris and Quercus 
spp. respectively). All of these authors con-
cluded that allometric models can be consi-
derably  improved  by  including  height  and 
other  variables,  rather  than  basing  results 
solely on  dbh.  The  Austrian  NFI  however 
contains many records where height is calcu-
lated from dbh rather than directly measured, 
which would appear to negate any possible 
advantage  of  using  more  complicated  allo-
metrics.

Besides  natural  variability,  several  other 
factors  may  account  for  the  differences 
between model output and NFI records. The 
version of BIOME-BGC we use in this study 
is  not  designed  to  simulate  mixed-species 
forest, so the up to 20 percent of non-homo-
genous species on any plot may have some 
minor effect. Uncertainty in biomass expan-
sion  factors  (Lehtonen  et  al.  2007)  is  also 
possibly  biasing  on  some plots,  where  the 
by-plot ratio of volume to biomass is not the 
same as the mean by-tree relationship for the 
dominant species (Tab. 1).

Although  it  may  seem  that  the  results 
presented here are an artificial “forcing” of 
model assumptions to match the NFI data, in 
most cases the simulated thinnings are timed 
to occur several decades prior to the invento-
ry measurement. The model is thus required 
to accurately simulate growth over long pe-
riods before the results in  Fig. 3 are extrac-
ted. Alternative approaches such as thinning 
to precisely match field data (Pötzelsberger 
2008)  would  not  be  possible  for  apparent 
model underestimations and thus would give 
an underestimation in the mean. Thinning all 
plots equally so that the simulation and the 
field  data  have  equal  means  would  simply 
shift  the  blue  curve  in  Fig.  1 to  the  left, 
giving  a  non-normal  error  distribution.  An 
“expert  opinion”  approach  (Petritsch  2008) 
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Fig. 3 - Standing vo-
lume in Period 1. Error  
bars show one standard  

deviation above and
below the mean.

Fig. 4 - Bland-Altman plot of standing volume determined with inventory and with the BIO-
ME-BGC model. In each plot the “x” axis is the mean of the volume assessed with each  
method, while the “y” axis is the difference between the methods (BGC subtract inventory).  
Dashed lines indicate the mean difference.
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would ignore the standing volume informa-
tion available in  the NFI dataset. Although 
single plot data in the NFI is extremely im-
precise, in the aggregate it can be assumed to 
provide accurate values.

By thinning to target a normal error curve, 
apparent  model  underestimations  are  little 
affected.  In  cases  where  a  plot  simulated 
without thinning greatly overestimates stan-
ding volume a heavy or a series of thinnings 
is indicated.  There are any number of pos-
sible  normal  error  curves  that  could  have 
been selected as the “target” error curve, but 
the  procedure  using  the  Box-Cox transfor-
mation  was chosen to  maximise the use of 
the available data. The timing of the thinning 
events at 40, 70, 100 and 130 years of age 
appears to be reasonably consistent with re-
cords from the NFI (Fig. 5). A breakdown of 
thinning volume removals (Tab. 2) suggests 
that  the  assumption  procedure  tends  to 
underestimate the number of thinnings,  but 
overestimate  the  volume  removed  in  each 
thinning event. The results shown in  Fig. 3 
however suggest that this has a minimal ef-
fect on the final simulated standing volumes.

Conclusions
The incorporation  of unknown forest  ma-

nagement histories into ecosystem modelling 
is a challenging issue, yet the ability of mo-
dels  to  accurately  mimic  forest  volume 
growth  is  dependant  on  management  being 
appropriately considered.  As we will  rarely 
know the history of a large number of sites 
in sufficient detail to use real figures for his-
toric thinnings, supportable procedures must 
be  developed  for  appropriate  assumptions. 
While  National  forest  inventories  provide 
large  datasets  of  potential  calibration  data, 
the  statistical  nature  of  inventories  means 
that  we  cannot  assume  a  single  inventory 
point to be representative of a wider area and 
directly comparable with model outputs for 
that  point.  The  statistical  estimation  of 
management  history in  this  work  does  not 
attempt to describe the real, unknown thin-
ning history of  each  stand.  Rather,  it  esta-
blishes a set of assumptions that can mimic 
the true management history in such a way 
that  we can produce unbiased  estimates  of 
standing  volume  which,  at  a  sufficiently 
large  scale,  are  compatible  with  National 

Forest Inventories.
The procedure  developed  here  has  provi-

ded us with model-driven timber volume es-
timates  for  1133  sites  across  the  whole  of 
Austria that are overall a close match to NFI 
records at the national scale, are of compa-
rable  precision,  and  maximise  the  use  of 
available  data.  Future  work  will  examine 
how well  model  simulations  compare  with 
NFI  records  for  subsequent  inventory  pe-
riods,  where statistical indications are avai-
lable regarding management interventions on 
each plot.
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