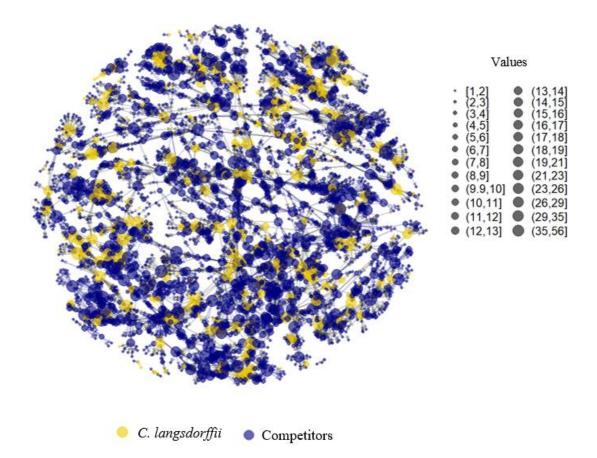
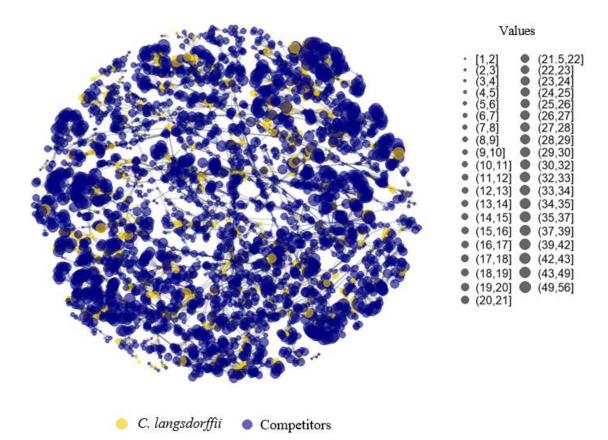

## **Supplementary Material**

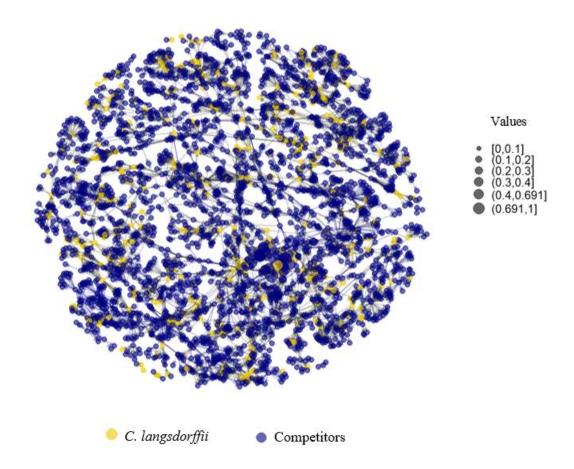
**Fig. S1 -** The representation of the in-degree metric with nodes colored according to each species and their sizes scaled according to their values.



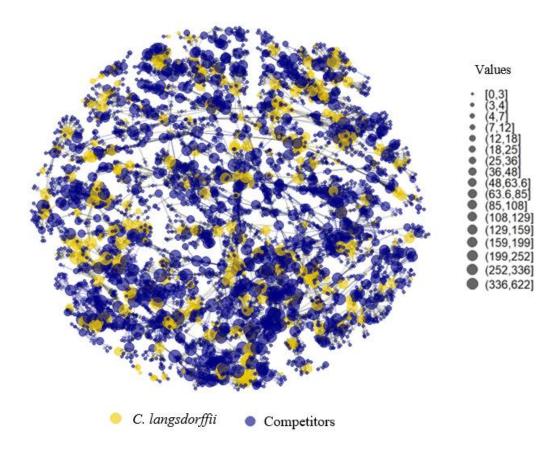

**Fig. S2** - The representation of the out-degree metric with nodes colored according to each species and their sizes scaled according to their values.



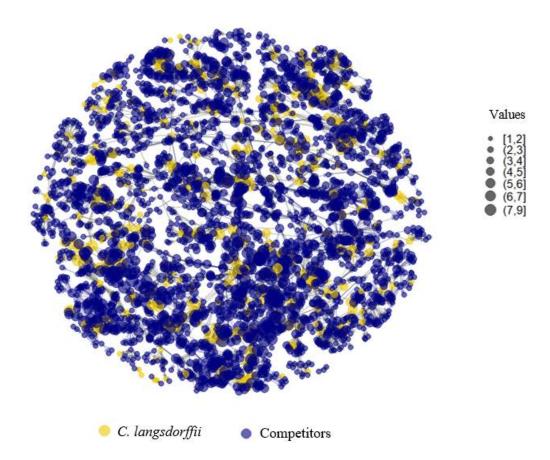

s2


**Fig. S3** - The representation of the total degree metric with nodes colored according to each species and their sizes scaled according to their values.




**Fig. S4** - The representation of the nearest neighbors degree with nodes colored according to each species and their sizes scaled according to their values.




**Fig. S5** - The representation of the eigenvector centrality with nodes colored according to each species and their sizes scaled according to their values.



**Fig. S6** - The representation of the closeness centrality with nodes colored according to each species and their sizes scaled according to their values.



**Fig. S7** - The representation of the coreness with nodes colored according to each species and their sizes scaled according to their values.



**Fig. S8** - The representation of the clustering coefficient with nodes colored according to each species and their sizes scaled according to their values.

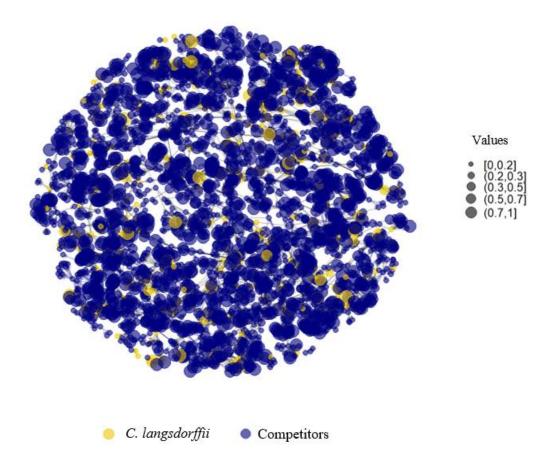
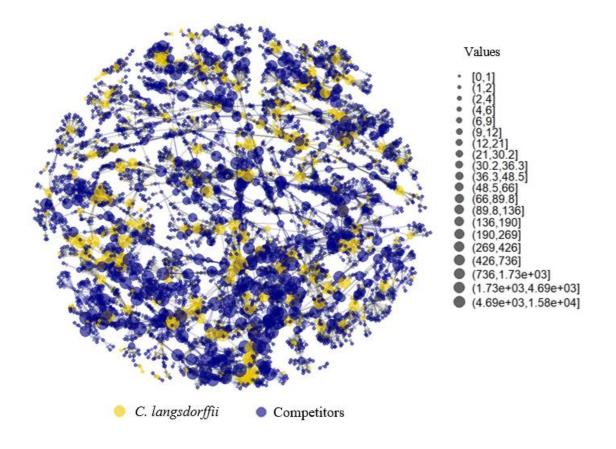




Fig. S9 - The representation of the betweenness centrality with nodes colored according to each species and their sizes scaled according to their values.



| Metric                                      | Ecological<br>Interpretation                                                  | Meaning                                                                                                                  | Example                                                                                                                                                                                                 |
|---------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| k <sub>in</sub> (In-degree)                 | Number of times the subject tree acts as a competitor                         | Indicates the<br>competitive impact the<br>subject tree has on<br>others                                                 | <ul> <li>Low: Trees with few<br/>direct competitors.</li> <li>High: Trees with many<br/>direct competitors.</li> </ul>                                                                                  |
| k <sub>out</sub> (Out-degree)               | Number of competitors<br>competing with the<br>subject tree                   | Shows the competitive<br>pressure acting on the<br>subject tree                                                          | <ul><li>Low: Trees with few competitors.</li><li>High: Trees facing many competitors.</li></ul>                                                                                                         |
| k (Total Degree)                            | Total number of<br>competition relations<br>(in-degree + out-degree)          | Measures the intensity<br>of competitive<br>interactions the tree is<br>involved in                                      | <ul> <li>Low: Trees in<br/>environments with few<br/>competitive interactions.</li> <li>High: Trees in<br/>environments with high<br/>competition.</li> </ul>                                           |
| k <sub>nn</sub> (Average neighbors' degree) | Average number of<br>competitors of the<br>competitors of the<br>subject tree | Evaluates the local<br>competitive context,<br>indicating if the tree is<br>in an area with high<br>indirect competition | <ul> <li>Low: Trees in areas<br/>with low competitive<br/>interaction among<br/>competitors.</li> <li>High: Trees in areas<br/>with high competition<br/>between their<br/>competitors.</li> </ul>      |
| Eigenvector Centrality                      | Importance of the tree<br>based on the influence<br>of its competitors        | Shows the competitive<br>relevance based on the<br>strength of its<br>competitors                                        | <ul> <li>Low: Trees with<br/>limited influence in<br/>competition.</li> <li>High: Trees highly<br/>influential due to the<br/>competitive strength of<br/>their competitors.</li> </ul>                 |
| Closeness Centrality                        | Competitive proximity<br>to all other trees in the<br>network                 | Indicates the tree's<br>ability to rapidly sense<br>competitive changes,<br>such as resource release<br>nearby           | <ul> <li>Low: Trees on the<br/>periphery of the<br/>competitive network.</li> <li>High: Trees close to<br/>the center of competitive<br/>dynamics.</li> </ul>                                           |
| Betweenness Centrality                      | Number of times the<br>tree connects competitor<br>groups                     | Reveals the tree's role<br>as a competitive bridge,<br>influencing the flow of<br>competition between<br>groups          | <ul> <li>Low: Trees with little<br/>role in connecting<br/>different competitor<br/>groups.</li> <li>High: Trees with a<br/>central role in<br/>connecting different<br/>competition groups.</li> </ul> |
| Coreness (k-core)                           | Participation in dense competitive cores,                                     | Indicates the tree's<br>location in highly<br>competitive                                                                | - Low: Trees in areas<br>with low competition<br>(e.g., $k = 1$ ).                                                                                                                                      |

Tab.S1 - Ecological interpretations of Complex Network metrics for tree competition.

| Metric                 | Ecological<br>Interpretation                                                                                     | Meaning                                                                                            | Example                                                                                                                                                                                                 |
|------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | where all trees face at least k competitors                                                                      | environments, with<br>intense local interactions                                                   | - High: Trees in high-<br>competition cores (e.g., $k \ge 3$ ).                                                                                                                                         |
| Clustering Coefficient | Competitive clustering<br>around the tree, showing<br>whether its competitors<br>also compete with each<br>other | Reveals a dense<br>competitive network<br>indicating intense local<br>competition for<br>resources | <ul> <li>Low: Trees in areas<br/>with dispersed<br/>competition and fewer<br/>connections.</li> <li>High: Trees in areas<br/>with highly concentrated<br/>competition among loca<br/>groups.</li> </ul> |

| Distance-dependent indices (DD)   |                                             |                                                                  |  |  |
|-----------------------------------|---------------------------------------------|------------------------------------------------------------------|--|--|
| Code                              | Authors                                     | Formulas                                                         |  |  |
| DD1                               | Hegyi (1974)                                | $\sum_{j=1}^n (d_j / d_i l_{ij})$                                |  |  |
| DD2                               | Rouvinen and Kuuluvainen (symmetric, 1997)  | $\sum_{j=1}^n d_j / l_{ij}$                                      |  |  |
| DD3                               | Rouvinen and Kuuluvainen (asymmetric, 1997) | $\sum_{j=1}^{n} \frac{\left(d_{j}/d_{i}\right)^{2}}{l_{ij}}$     |  |  |
| DD4                               | Martin and Ek (1984)                        | $\sum_{j=1}^n rac{d_j}{d_i} \;\; rac{1}{\left(l_{ij}+1 ight)}$ |  |  |
| DD5                               | Staebler (1951)                             | $\sum_{j=1}^n l_{ij}$                                            |  |  |
| DD6                               | Moore et al. (1973)                         | $\sum_{j=1}^{n} \frac{d_{i}^{2}}{d_{i}^{2} + d_{j}^{2}}  I_{ij}$ |  |  |
| Distance-independent indices (DI) |                                             |                                                                  |  |  |
| DI1                               | Daniels et al. (1986)                       | $\left(d_i^2 n\right) / \sum_{j=1}^n d_j^2$                      |  |  |
| DI2                               | Mugasha (1989)                              | $\frac{\sum\limits_{j=1}^n \bigl( {d_j} \big/ {d_i} \bigr)}{n}$  |  |  |
| DI3                               | Lorimer (1983)                              | $\sum_{j=1}^n d_j \big/ d_i$                                     |  |  |
| DI4                               | Looney et al. (2018)                        | $\sum_{j=1}^n d_j$                                               |  |  |
| DI5                               | Corona and Ferrara (1989)                   | $\sum_{j=1}^n \bigl( {d_j^2 \big/ d_i^2} \bigr)$                 |  |  |
| DI6                               | Tomé and Burkhart (1989)                    | $d_i / d_{\max}$                                                 |  |  |
| DI7                               | Glover and Hool (1979)                      | $d_i^2/\overline{d}^2$                                           |  |  |
| DI8                               | Stage (1973)                                | $d_i/d_q$                                                        |  |  |
|                                   |                                             |                                                                  |  |  |

Tab. S2 - Inter-tree competition indexes applied for *Copaifera langsdorffii* trees.

| DI9                                                                                                                           | Pedersen et al. (2013) | $d_q/d_i$                |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|
| DI10                                                                                                                          | Stage (1973)           | $SA_i^2/SA_q^2$          |
| DI11                                                                                                                          | Stage (1973)           | $BAL_i$                  |
| Semi-distance-independent indices (SI)                                                                                        |                        |                          |
| SI1                                                                                                                           | Stage (1973)           | $SA_i^2/SA_{q_n}^2$      |
| SI2                                                                                                                           | Glover and Hool (1979) | $d_i^2/\overline{d}_n^2$ |
| Where: $d_i$ = diameter of the <i>i</i> -th subject tree, measured at 1.30 m – dbh (cm); $d_j$ = diameter of the <i>j</i> -th |                        |                          |
| competitor tree, measured at 1.30 m – dbh (cm); $l_{ij}$ = distance between the subject tree <i>i</i> and its                 |                        |                          |

competitor tree, measured at 1.30 m – dbh (cm);  ${}^{ij} =$  distance between the subject tree *i* and its competitor *j* (m);  ${}^{n} =$  number of competitor trees;  ${}^{d}_{max} =$  maximum dbh of the trees in the sample plot (cm);  $\overline{d}$  = arithmetic mean of dbh for trees in sample plot (cm);  ${}^{d}_{q}$  = quadratic mean diameter (q) of sample plot (cm);  ${}^{SA_{i}}$  = sectional area of the *i*-th subject tree (m<sup>2</sup>);  ${}^{SA_{q}}$  = sectional area corresponding to the quadratic mean diameter (q) of the boles in sample plot (m<sup>2</sup>);  ${}^{BAL_{i}}$  = sum of sectional areas of neighbor trees with larger boles than the subject tree *i*;  ${}^{SA_{q_{n}}}$  = sectional area corresponding to the quadratic mean diameter (q) of the subject tree *i*;  ${}^{SA_{q_{n}}}$  = sectional area corresponding to the diameter (q) of the *n* competing trees of the subject tree ;  $\overline{d}_{n}$  = arithmetic mean of the dbh of the *n* competing trees.