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Quantification of niche overlap represents an important topic in several as-
pects  of  ecology and conservation biology,  although it  could be  potentially
affected by imperfect detection, i.e., failure to detect a species at occupied
sites. We investigate the effect of imperfect detection on niche overlap quan-
tification in two arboreal rodents, the edible dormouse (Glis glis) and the ha-
zel dormouse (Muscardinus avellanarius). For both species, we used General-
ized Linear Mixed Models (GLMM) to estimate the occurrence probability and
Occupancy Models (OM) to calculate occurrence and detection probabilities.
By comparing these predictions through niche equivalency and similarity tests,
we first hypothesised that methods correcting for imperfect detection (OM)
provide a more reliable estimate of niche overlap than traditional presence/
absence methods (GLMM). Furthermore, we hypothesised that GLMM mainly
estimate species detectability rather than actual occurrence, and that a low
number of sampling replicates provokes an underestimation of species niche
by GLMM. Our results highlighted that GLMM-based niche overlap yielded sig-
nificant outcomes only for the equivalency test, while OM-based niche overlap
reported significant outcomes for both niche equivalency and similarity tests.
Moreover, GLMM occurrence probabilities and OM detectabilities were not sta-
tistically different. Lastly, GLMM predictions based on single sampling repli-
cates were statistically different from the average occurrence probability pre-
dicted by GLMM over all replicates. We emphasized how accounting for imper-
fect detection can improve the statistical significance and interpretability of
niche overlap estimates based on occurrence data. Under a habitat manage-
ment perspective, an accurate quantification of niche overlap may provide
useful information to assess the effects of different management practices on
species occurrence.

Keywords: Occupancy Models, Generalized Linear Mixed Models, Forest Man-
agement, Niche Overlap

Introduction
The niche is a central concept in ecology

and evolution that  dates  back at  least  to
Grinnell (1917). The fundamental ecological
niche  as  conceptualized  by  Hutchinson
(1957) is the space bounded by an n-dimen-

sional hypervolume, consisting of a range
of  abiotic  and  biotic  variables,  wherein  a
species is able to persist indefinitely in the
absence of competition.

Concerns on how global change will influ-
ence  niche  dynamics  in  evolutionary  and

community contexts, highlight the growing
need for robust methods to quantify niche
differences between or within taxa (Broen-
nimann et al. 2012). During the last decade,
statistical  approaches  have  been  devel-
oped allowing to compare species niches in
a gridded environmental space (Warren et
al.  2008,  Broennimann  et  al.  2012).  As  a
consequence, the estimation of niche over-
lap has  become an important  tool  for  in-
vestigating  ecological  requirements  of  in-
vasive  species  (Gregory  &  MacDonald
2009),  relative  abundance  distributions
(McGill  et  al.  2007),  species  coexistence
(Gregory & MacDonald 2009), evolutionary
diversification (Araya et al.  2011) and con-
servation  strategies  (Russo  et  al.  2015).
However,  specific  factors  were  shown to
affect  estimates  of  niche  overlap.  For  in-
stance,  recent  studies  highlighted  how
niche overlap quantification may yield mis-
leading results depending on the grain size
(Kirchheimer et al. 2016) and the geograph-
ical  scale  (Russo et  al.  2015)  used to per-
form the analysis. Among other factors, im-
perfect  detection,  i.e.,  failure  to  detect  a
species at occupied sites was shown to af-
fect  niche  estimation  itself.  For  instance,
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predictions of species distribution through
species  distribution  modelling  (SDM),
which  are  based  on  quantifying  realized
niche by means of the spatial (geographic)
distribution of species across a study area
(Raes 2012), may be underestimated if not
accounting  for  imperfect  detection  (Rota
et  al.  2011,  Lahoz-Monfort  et  al.  2014).  In
light of  this evidence, investigating which
bias could be introduced when quantifying
overlap of two niches that are already af-
fected by imperfect detection, represents
an intriguing research topic.

Niche estimation and modelling typically
relies  on  presence/absence  or  presence/
background  data  (Lahoz-Monfort  et  al.
2014). However, these data could be biased
by the fact that species (both animals and
plants – Chen et al. 2013) often remain un-
detected, making imperfect detection a se-
rious issue in species surveys (Lahoz-Mon-
fort et al. 2014, Guillera-Arroita 2017), and a
major source of bias in wildlife distribution
studies  (MacKenzie et  al.  2002).  Unless  a
suitably large sampling effort is invested at
surveyed  locations,  imperfect  detection
will  result  in  the  recording  of  false  ab-
sences  in  presence/absence  data,  poten-
tially leading to biased conclusions and in-
correct  conservation  actions  (MacKenzie
et al. 2002, Green et al. 2011). Many studies
demonstrated  that  detectability  varies
among species, over time, and among habi-
tats,  and  there  may  be  serious  conse-
quences  when  this  variability  is  ignored
(Guillera-Arroita 2017). The occurrence of a
species could be easy to prove, but species
absence  and  non-detection  can  be  often
confounded,  especially  in  case  of  species
with  low  detectability  (MacKenzie  et  al.
2002, Mackenzie & Royle 2005).

A  popular  approach  was  proposed  to
overcome  this  problem  by  explicitly  ac-
counting  for  imperfect  detection  when
quantifying  species  distribution  (Macken-

zie & Royle 2005, Bailey et al. 2014). Hence,
the  so-called  “occupancy  models”  are
based on the detection history at sites and
the proportion of sites where the species is
detected,  jointly  modelling  the  processes
describing where the species occurs and its
detection at occupied sites (MacKenzie et
al.  2002).  In  recent  years,  several  studies
highlighted the importance of explicitly ac-
counting  for  imperfect  detection  when
modelling species distribution (Rota et al.
2011, Lahoz-Monfort et al. 2014), though its
effect on the quantification of niche over-
lap among species have been surprisingly
overlooked. We aimed at filling this gap by
evaluating  the  effect  of  imperfect  detec-
tion on the quantification of niche overlap
between  two  sympatric  forest  rodents.
Specifically, we aimed at testing the follow-
ing hypotheses:
• H1:  the  probability  of  occurrence  cor-

rected for imperfect detection provides a
more  reliable  estimate  of  niche  overlap
than  predictions  from  traditional  pres-
ence/absence methods;

• H2: predictions of occurrence probability
derived  from  traditional  presence/ab-
sence  methods  reflects  the  species  de-
tectability  rather  than  its  actual  occur-
rence pattern;

• H3: a low number of sampling replicates
in traditional presence/absence methods
causes  an  underestimation  of  species
niche.
The  three  hypotheses  respectively  fo-

cused  on  niche  overlap  between  species
(H1), between modelling methods (H2) and
among  sampling  replicates  (H3).  We  tar-
geted  the  analyses  to  two  arboreal  ro-
dents: the edible dormouse (Glis glis) and
the  hazel  dormouse  (Muscardinus  avella-
narius), occurring sympatrically in a Central
Apennines deciduous forest.

Although both species are strictly forest
dependent,  they  exhibited  different  eco-

logical  preferences  with  regard  of  forest
characteristics  (Capizzi  et  al.  2002,  Pan-
chetti  et  al.  2007)  therefore  representing
ideal candidate species for a niche compari-
son study. The two species were surveyed
with a sampling design addressed to pro-
vide both occurrence and detection proba-
bilities (MacKenzie et al.  2002). Fine scale
environmental  covariates were then mea-
sured at each sampled plot and related to
both occurrence and detectability.

Materials and methods

Study area
The study area is located in Central Apen-

nines (Molise, Italy; 41° 43′ N, 14° 06′ E – Fig.
1),  with an elevation ranging from 650 to
1300 m a.s.l.

The  area  covers  approximately  18  km2

and  it  is  mainly  dominated  by  European
beech (Fagus sylvatica L.)  and Turkey oak
(Quercus  cerris L.)  forests  (Vizzarri  et  al.
2015),  with  different  ownership,  forest
structures (i.e., coppices and high forests)
and  management  objectives  (i.e.,  timber
harvesting,  biodiversity  conservation,  hy-
drogeological protection etc.). The climate
is  classified as “temperate”,  with a mean
annual  precipitation  of  1100  mm  and  a
mean annual  temperature of  8.6 °C (Blasi
et al. 2005).

According  to  Amori  et  al.  (2008),  the
study area hosts 25 small mammal species,
including 14 rodents (order Rodentia, fami-
lies Cricetidae, Gliridae, Muridae and Sciuri-
dae)  and  11  insectivores  (order  Eulipoty-
phla,  families  Erinaceidae,  Soricidae  and
Talpidae),  most  of  which  (ca.  58%)  are
listed in the Appendix III of the Bern Con-
vention, in the Annex IV of 357/97/EC Habi-
tats Directive or are protected by the Ital-
ian law 157/1992.

Dormice occurrence sampling
A  total  of  83  sampling  plots  were  ran-

domly located in the study area with a min-
imum  distance  of  200  m  (mean  nearest
neighbour distance = 316 ± 111 m), in order
to  guarantee  the  independence  of  data
based on the average home range size of
the  target  species  (Bright  &  Morris  1991,
Bright & Morris 1992, Mortelliti et al. 2009).
A nest box and a hair-tube were installed at
each site (see Appendix 1 in Supplementary
material). Sampling plots were checked for
species presence/absence at 15 days inter-
vals during the pre-hibernation period from
the end of  August until  mid-October 2013
(Panchetti  et  al.  2007,  Amori  et  al.  2008)
for  a  total  of  four  sampling  replicates.
Specifically,  nest  boxes  were  considered
occupied  either  when  individuals,  nests,
food remains or droppings were detected
inside the box (Bright et al. 1994). Species
presence at hair-tubes was determined by
analysing  hair  samples  found  inside  the
tubes (for further details on the hair identi-
fication protocol, see Appendix 1 in Supple-
mentary material).

483 iForest 11: 482-490

Fig. 1 - Map of the study area with sampling plots location.
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Estimation of niche overlap between two forest dormice

Forest parameters estimation and 
selection

A set of 12 dendrometric and typological-
structural  forest  parameters  were  mea-
sured at each sampling plot following the
Italian  National  Forest  Inventory  protocol
(Gasparini  & Tabacchi  2011 – see also Ap-
pendix  2).  In  particular,  dendrometric  at-
tributes  were  measured  for  all  the  living
trees  with  a  Diameter  at  Breast  Height
(DBH) ≥ 7.5 cm, considering circular plots
of 13 m radius. Forest attributes related to
deadwood were also quantified within the
same circular plots (Lombardi et al. 2008).
Typological-structural parameters including
forest  category,  forest  management  and
stand age were attributed according to the
regional forest type and age maps (Vizzarri
et al. 2015, Frate et al. 2016). Numerical co-
variates  were  standardized  and  sub-se-
lected to avoid multicollinearity, consider-
ing  a  Variance  Inflation  Factor  lower  or
equal  to 10 (Zuur et al.  2010). This  proce-
dure led to a final set of seven forest pre-
dictors  that  were  included  in  the  subse-
quent analyses (Tab. 1).

Modelling framework
The  modelling  framework  proceeds

through three steps: (1) investigate the sta-
tistical relationships between species pres-
ence/absence  and  forest  covariates
through Generalized Linear Mixed Models
(GLMM) and Occupancy Models (OM); (2)
calculate  the  niche  overlap  between  the
two target species starting from the values
of  occurrence  probability  predicted  by
both  modelling  approaches;  (3)  quantify,
for both species, the degree of niche simi-
larity between GLMM and occupancy pre-
dictions,  and  by  GLMM  and  detectability
predictions, respectively.

Generalized linear mixed models
To investigate the statistical relationship

between  species  occurrence  and  forest
variables, we applied GLMM (McCullagh &
Nelder  1989)  implemented in  the  “lme4”
package (Bates et al. 2015) of R statistical
language ver.  3.4.0 (R Development Core
Team 2018). GLMM proved useful when re-

peated  measurements  are  made  on  the
same  statistical  units  (i.e.,  longitudinal
studies),  therefore  violating  the  indepen-
dence of sampling units (Zuur et al.  2013,
Johnson et al. 2015). The presence/absence
data detected at each site during the four
sampling replicates were used as response
variable.  We started from a full  model  in-
cluding, as fixed effect terms, all the seven
forest covariates (allowing both linear and
quadratic relationships for the continuous
ones), along with an interaction term with
forest  management  (Tab.  1).  Besides,  we
considered the  sampling  replicate  as  ran-
dom  effect.  Specifically,  we  allowed  the
model to change its intercept according to
the sampling replicate to take into account
non-independence of data between differ-
ent  sampling of  the same sites.  We then
applied  a  variable selection procedure  al-
lowing to compare models with all the pos-
sible  combinations  of  the  starting  covari-
ates  and  random  effect  terms.  The
“dredge” function in the R package “Mu-
MIn” (Barton 2018) was used for model se-
lection,  ranking the  candidate  models  ac-
cording to their  AICc  (Burnham & Ander-
son  2002).  To  account  for  uncertainty  in
model selection, we used a model averag-
ing approach (i.e., we averaged all models
within two ΔAICc of the top model – Burn-
ham  et  al.  2011,  Nakagawa  &  Freckleton
2011).  The  goodness-of-fit  of  the  models
was assessed by calculating the conditional
and marginal coefficients of determination
for  GLMM  (R_GLMM2 – Nakagawa  et  al.
2013).

Conditional  R_GLMM2 is  interpreted  as
the variance explained by  both fixed and
random  factors  (i.e.,  the  entire  model),
whereas marginal R_GLMM2 refers to vari-
ance explained by the fixed factors (i.e., ex-
cluding the random effect  – Nakagawa et
al. 2013).

Occupancy models
This  statistical  approach consists  of  two

hierarchically  coupled  sub-models,  one
governing the true state of sites (presence/
absence) and the other governing the ob-
servations (detection/non-detection – Mac-

Kenzie et al. 2002). OM can correct for im-
perfect  detection  due  to  false  absences
(i.e.,  failure  to  detect  a  species  that  is
present  at  the  site  – MacKenzie  et  al.
2002), which represents a major source of
bias  in  wildlife  distribution  studies  (Mac-
Kenzie  et  al.  2002,  Mackenzie  &  Royle
2005).  We applied  a single-season,  single-
species model  (MacKenzie et  al.  2002) to
compute the probability of occurrence (oc-
cupancy,  ψ) and the probability of detect-
ing the species (detectability,  p), using the
R package “unmarked” (Fiske & Chandler
2011).  In this  case, we used the detection
history of each species per site, i.e., the se-
quence  of  presences/absences  over  the
complete  survey  period  (four  replicates),
as response variable in the model. Similarly
to GLMM, we started from a full model in-
cluding all the seven forest covariates (al-
lowing both linear and quadratic  relation-
ships for the continuous ones), along with
an  interaction  term  with  forest  manage-
ment. Following Mortelliti et al. (2015), we
split  the  variable  selection  procedure  in
two steps: (1) the detection probability was
modelled as a function of different combi-
nations  of  forest  predictors,  keeping  the
occupancy  as  constant  and  retaining  the
best subset of variables in the subsequent
step;  (2)  the selection  procedure was  re-
peated simultaneously including both occu-
pancy  and  detectability,  while  including,
for the latter, only the variables combina-
tions selected in step 1. As for GLMM, we
averaged all models within ΔAICc ≤ 2 from
the top model. The goodness-of-fit of each
model  was  measured  using  the  Nagelk-
erke’s  pseudo-R2 (Nagelkerke  1991).  Pre-
dicted  values  of  occurrence  probability
(from  GLMM),  ψ and  p (from  OM)  were
projected over the study area by spatializ-
ing  the  predictors  selected  in  the  top-
ranked models (i.e., models within ΔAICc ≤
2). Further details on the spatialization pro-
cedure are provided in Appendix 3 (Supple-
mentary material).

Niche overlap
For both species, we ran the niche over-

lap analyses considering the following pa-
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Tab. 1 - Explanatory variables used for GLMM and OM.

Forest parameter Type Levels Description

Forest category (F_cat) Categorical
Beech forest

Category of forest defined by its composition
Turkey oak forest

Forest management (F_man) Categorical

Coppice with standard

Prevalent silvicultural system adoptedCoppice in conversion to high forest

Mature high forest

Tree species richness (SR) Continuous - Number of tree species (n)

Tree density (T_density) Continuous - Mean number of trees per hectare (n ha-1)

Mean of the trees’ heights 
(Mean_height) Continuous - Average height of trees (m)

σ² Height (Stdev_height) Continuous - Standard deviation of trees heights (m)

Stand basal area (Basal_area) Continuous -
The cross-sectional area of the tree stems 
measured at breast height (m2 ha-1)
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rameters:  Pocc_  (average  values  of  occur-
rence  probability  predicted  by  GLMM
along all of the four replicates), Pocc_rep_i_
(occurrence  probability  predicted  by
GLMM for the i-th sampling replicate); Psi_
(occurrence probability predicted by OM),
Det_  (detection  probability  predicted  by
OM). The flowchart of the methodological
sequence  followed  to  implement  niche
overlap analyses is depicted in Fig. 2.

To test  H1,  we performed the following
niche overlap  tests:  Pocc_Gglis  vs. Pocc_Ma-
vellanarius and Psi_Gglis  vs. Psi_Mavellana-
rius.  Then, we compared Pocc_  vs. Psi_and
Pocc_  vs. Det_for  both  species  to test  H2.
Lastly, we tested H3 by calculating Pocc_ vs.
Pocc_rep_i_,  for both species and the four
sampling  replicates,  separately.  All  the
niche overlap tests are shown in Fig. 2.

Analysis  of  niche  overlap  between  the
two species was carried out using the ana-
lytical  framework  proposed  by  Broenni-
mann et al. (2012) and recently adopted in
different studies (Russo et al. 2015). Within
this framework, the environmental space is
defined by the axis of occurrence probabili-
ties  predicted  by  GLMM and  OM  for  the
two  species.  The  output  of  such  models
comprises a single vector of predicted oc-
currence  probabilities  derived  from  com-
plex combinations of functions of original
environmental variables; the niche overlap
is  analysed  along  this  gradient  of  predic-
tions  (Broennimann  et  al.  2012).  Niche

overlap  was  computed  in  terms  of
Schoener’s  D (Schoener  1970),  a  metric
that ranges from 0 (no overlap) to 1 (com-
plete overlap).

We performed niche equivalency and sim-
ilarity tests sensu Warren et al. (2008). The
first  test evaluates if  the two species are
identical  (null  hypothesis)  in  their  niche
space  by  using  their  exact  locations  and
not  including  the  surrounding  space.  The
second also accounts for the differences in
the surrounding environmental conditions
and assess if the two species are more dif-
ferent than expected by chance. In particu-
lar, similarity between niches was tested in
both directions, i.e., the amount of species
1 niche included in species 2 niche, and vice
versa, following Broennimann et al. (2012).
All  the procedures were performed using
the R package “ecospat” (Broennimann et
al. 2017).

Results
Throughout the duration of the study, we

reported 31 detections of G. glis at 27 of 83
sampling  plots  and  31  detections  of  M.
avellanarius at 16 of 83 sampling plots (fur-
ther details are provided in Tab. S1, Supple-
mentary material). In GLMM, model selec-
tion  procedure  identified  15  top-ranked
models for  G. glis  and three for  M. avella-
narius  out of 3136 candidate models. Both
species showed high values of conditional
R_GLMM2 (G.  glis:  mean  =  0.523,  SD  =

0.065; M. avellanarius: mean = 0.640, SD =
0.006). Conditional R_GLMM2 were always
higher than marginal ones, indicating that
the inclusion of the random effect system-
atically improved the models goodness-of-
fit (Tab. S2). Occurrence of G. glis was pre-
dominantly explained by stand basal  area
(15 models)  through a  direct  relationship.
In addition, eight out of 15 top-ranked mod-
els  predicted higher occurrence probabili-
ties at increasing tree density values and in
Turkey oak stands (Tab. S2, Fig. 3b). For M.
avellanarius, mean tree height and interac-
tion between tree density and forest man-
agement  were  the  most  important  vari-
ables, resulting inversely related with spe-
cies occurrence in all the top-ranked mod-
els. In addition, standard deviation of tree
height and forest  category were retained
in more than a half of the top-ranked mod-
els, predicting higher occurrence probabili-
ties in forests with high variability  in tree
heights and beech stands (Tab. S2, Fig. 3c).

In OM, the final model set included eight
top-ranked models for  G. glis  and two for
M. avellanarius out of 3136 candidate mod-
els.  Goodness-of-fit  statistics  for  the  top-
ranked models reported a mean pseudo-R2

equal to 0.370 (SD = 0.033) for  G. glis and
to  0.549 (SD =  0.030)  for  M.  avellanarius
(Tab. S3 in Supplementary material). For G.
glis, both occupancy and detectability were
directly related with stand basal area in all
the  top-ranked  models.  Six  out  of  eight
models also included forest management,
predicting higher occupancy values in high
forests and coppices in conversion rather
than in coppices. Besides, mean tree height
was retained in four models, always show-
ing  a  direct  relationship  with  the  occur-
rence probability (ψ – Tab. S3, Fig. 3e). For
M.  avellanarius,  occupancy  was  predomi-
nantly explained by standard deviation of
tree heights,  showing an inverse relation-
ship  in  both  top-ranked  models.  In  addi-
tion, tree density and forest category were
retained in half of the top-ranked models,
predicting  higher  occupancy  values  in
dense forests and beech stands (Tab.  S3,
Fig. 3f). Finally, M. avellanarius detectability
was  mainly  explained  by  mean  and  stan-
dard deviation of tree height and tree den-
sity  (Tab.  S3  in  Supplementary  material).
Maps of predicted detectability for the two
species show overall higher values of p for
M. avellanarius (mean = 0.192, SD = 0.041)
than for  G. glis (mean = 0.154, SD = 0.004;
Fig. 4). For both species, GLMM predicted
lower values of occurrence probability (G.
glis:  mean =  0.104,  SD =  0.083;  M.  avella-
narius: mean = 0.114, SD = 0.201) than prob-
ability values corrected by detectability un-
der  OM  (ψ,  G.  glis:  mean  =  0.599,  SD  =
0.163;  M. avellanarius: mean = 0.504, SD =
0.337 – Fig. S1).

As  for  niche  overlap  tests,  GLMM’s
Pocc_Gglis vs. Pocc_Mavellanarius (Schoener’s
D  = 0.41  – Fig. 3a) showed significant out-
comes  only  for  the  equivalency  test.  On
the  other  hand,  niche  overlap  computed
on  OM’s  Psi_Gglis  vs. Psi_Mavellanarius

485 iForest 11: 482-490

Fig. 2 - Flowchart of the niche overlap analysis implemented to test the three study
hypotheses. White rectangles with black borders refer to occurrence probability val-
ues predicted by GLMM, grey rectangles with rounded borders indicate occupancy
values predicted by OM and grey rectangles with squared borders indicate detectabil -
ity values predicted by OM. Dashed arrows refer to niche equivalency and similarity
tests used to compare the predictions.
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Estimation of niche overlap between two forest dormice

(Schoener’s  D = 0.26 – Fig. 3d) yielded sig-
nificant  outcomes  for  both  niche  equiva-
lency and similarity (i.e., niche 1 vs. niche 2
– Fig. 3a, Fig. 3d, Tab. 2).

For  both  species,  overlap  values  calcu-
lated between GLMM predictions and OM
detectabilities  (i.e.,  Pocc_  vs. Det_)  were
higher  than  those  calculated  between
GLMM predictions and OM occupancy (i.e.,
Pocc_ vs. Psi_). Specifically, Schoener’s D cal-
culated  for  Pocc_Gglis  vs. Det_Gglis were
higher than for Pocc_Gglis vs. Psi_Gglis, with

both  tests  resulting  significant  for  the
equivalency hypothesis (Warren et al. 2008
– Tab.  2).  We found a  similar  pattern for
Pocc_Mavellanarius  vs. Det_Mavellanarius,
showing  higher  values  of  Schoener’s  D
than  Pocc_Mavellanarius  vs. Psi_Mavella-
narius.  In  addition,  Pocc_Mavellanarius  vs.
Det_Mavellanarius failed to reject  the null
hypothesis of the equivalency test, i.e., the
two  niches  were  identical  (Warren  et  al.
2008 – Tab. 2).

Finally,  G.  glis GLMM  predictions  by  the

first  three  sampling  replicates  (Pocc_Gglis_
rep_1-3) scarcely overlapped with the aver-
age  predicted  probability  of  occurrence
(Pocc_Gglis),  also showing significant  niche
equivalency  (i.e.,  not  equivalent  niches)
and similarity tests (niche 2 vs. niche 1). M.
avellanarius yielded a similar pattern, show-
ing  GLMM  predictions  by  the  first  two
replicates  (Pocc_Mavellanarius_rep_1-2)  as
not equivalent to the average predicted oc-
currence  probability  (Pocc_Mavellanarius –
Tab. 2). Only GLMM predictions from repli-
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Fig. 3 - Models’ outcomes. The two rows show results for GLMM and OM, respectively. First column depicts niches of edible (dark
grey) and hazel (light grey) dormice calculated from GLMM (a) and OM (d) predictions. Yellow areas refer to niche overlap. Circles
(a, d) show the significant outcomes (white) of the equivalency and similarity tests. Bar plots on the right display variables impor -
tance for the two species calculated by GLMM (b, c) and OM (e, f), as the cumulative sum of Akaike weights over the top-ranked
models. Only variables being selected in at least a half of the top-ranked models were included. For forest management (F_man)
two of the three levels are shown: high forests (dark grey) and coppices in transition (black). For forest category (F_cat) the level
referring to “Turkey oak” category was displayed.

Fig. 4 - Maps of predicted
detection probabilities
for G. glis (left) and M.

avellanarius (right).
Detectability values,
which range from 0

(blue) to 1 (red), were
projected over the study

area by spatializing the
predictors selected in

the top-ranked models
(see also Appendix 3 in

Supplementary mate-
rial). White (black) dots

indicate presence
(absence) sites.
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cates 3 and 4 for M. avellanarius, and 4 for
G.  glis,  resulted  identical  to  the  average
predicted  occurrence  probability  (Pocc_  –
Tab. 2).

Discussion
Our results showed how niche overlap es-

timation corrected for imperfect detection
was statistically more robust than classical
models.  This  outcome is likely due to the
fact  that  occurrence  probabilities  uncor-
rected  for  imperfect  detection  reflected
the species detectability rather than its ac-
tual occurrence pattern. Being affected by
this bias, occurrence probability values es-
timated  by  traditional  presence/absence
methods also led to a substantial niche un-
derestimation, especially when relying on a
low number of sampling replicates.

Correcting for imperfect detection 
increases significance in niche overlap 
tests

Niche overlap tests based on GLMM pre-
dictions showed significant outcomes only
for  the  equivalency  test.  On  the  other
hand,  niche  overlap  computed  on  OM
yielded significant outcomes for both niche
equivalency  and  similarity.  In  particular,
OM’s niche similarity tests were significant
only in one direction (from G. glis niche to
M. avellanarius),  indicating niche of  G. glis
to be completely included within that of M.
avellanarius,  but  not  vice  versa.  Such  an
asymmetric  pattern  suggests  the  edible
dormouse and the hazel  dormouse to be
characterized  by  a  narrow  and  a  large
niche respectively, with the first acting as
habitat specialist and the latter as general-
ist, in accordance with several literature ev-
idences. As a matter of fact, the edible dor-

mouse  is  known  to  prefer  forest  stands
with  a  continuous  canopy  cover  (Capizzi
et  al.  2002,  Juškaitis  &  Siozinyte  2008),
whereas the hazel dormouse is found in a
variety of habitats, from deciduous wood-
land, to coppices, and other wooded areas
with  a  dense understory  layer  dominated
by shrubs (Sozio et al. 2016).

Such differences in forest habitat require-
ments  between  the  two dormice  species
are strongly supported by OM predictions,
whereas  GLMM  outcomes  appeared  less
coherent  with  existing  knowledge  about
the ecology of the studied species. Specifi-
cally,  occupancy of  G. glis was directly re-
lated with increasing stand basal area and
mean tree  height,  with  higher  occupancy
values in high forests and coppices in con-
version.  This  evidence  supports  the  find-
ings  that  edible  dormouse  is  an  arboreal
species which lives on the canopy of  ma-
ture  broadleaved  (Cornils  et  al.  2017)  or
mature  mixed  woodlands  (Capizzi  et  al.
2003). For  M. avellanarius, occupancy was
predominantly  explained by  low standard
deviations of tree height, high tree densi-
ties  and  beech  stands.  These  outcomes
suggest M. avellanarius to prefer a wide va-
riety of forests with different stand charac-
teristics (Capizzi et al. 2002, Panchetti et al.
2007, Sozio et al. 2016), which in the study
area  include  even-aged,  highly  dense
stands (typical of the coppice management
system) as well as beech forests predomi-
nantly managed as high forests (Frate et al.
2016).  These differences  in  the ecological
strategies of the two dormouse is coherent
with their feeding habits. While the edible
dormouse  is  known  to  feed  mainly  on
beechnuts  and adapted to yearly  fluctua-
tions  in  seed  production  (Bieber  &  Ruf

2009),  the  hazel  dormouse  exhibited  a
wide dietary spectrum including berries, a
variety of nuts and even insects eggs and
larvae (Amori et al. 2008). It is important to
note that seed production and availability
are strongly influenced by forest manage-
ment systems; for instance, the regenera-
tion in high forests is  mainly achieved by
sexual reproduction, thus one of the main
management  goal  is  to  ensure  seed  pro-
duction  by  adopting  long rotation cycles.
On the contrary, in the coppice system the
regeneration is ensured by the resprouting
capacity of certain forest species: short ro-
tation cycles (usually less than 20 years) re-
duce flowering and seed production (Cian-
cio et al. 2006). However, coppices have a
higher number of understory species com-
pared to high forests (Scolastri et al. 2017),
including many shrubs species which offer
a  great  variety  of  food  resource  for  ro-
dents,  and  in  particular  for  hazel  dor-
mouse.  In  such a  perspective,  findings  of
the present study offer a  methodological
framework  to  assess  forests  naturalness
and to explore possible effects of alterna-
tive forest management systems on stand
structure,  i.e.,  towards  natural  evolution
and  the  establishment  of  old-growth  for-
ests (i.e.,  for beech forests  – Chiavetta et
al. 2012).

Uncorrected occurrence probabilities 
reflect species detectability instead of 
its occurrence

Our analyses showed that  for both spe-
cies,  GLMM mostly estimated the species
detectability rather than their actual occur-
rence pattern.  This  outcome was particu-
larly  evident for  M. avellanarius for which
GLMM predictions were statistically undis-
tinguishable from the species detectability,
i.e., the equivalency test failed to reject the
null hypothesis. The bias introduced by im-
perfect detection in GLMM led this model-
ling technique to substantially spurious es-
timates  of  the  two  species  niches  and,
consequently,  to  a  lack  of  significance  in
their overlap pattern. Lahoz-Monfort et al.
(2014) showed similar  evidences for pres-
ence/absence and presence-only SDMs. In
fact,  these  modelling  approaches  can
wrongly  identify  a  covariate  influencing
species detection as a covariate driving its
occurrence,  thus  resulting  in  poor  infer-
ence and predictions (Lahoz-Monfort et al.
2014).  This  argument  would  explain  why,
for M. avellanarius, GLMM predictions were
statistically undistinguishable from the spe-
cies  detectability.  For  this  species,  occu-
pancy and detectability  are  influenced by
similar  covariates,  although  through  rela-
tionships  with  opposite  signs  (Fig.  S2  in
Supplementary material). This would have
made GLMM particularly unable in discrimi-
nating between the covariates  driving  M.
avellanarius occupancy and those influenc-
ing  its  detectability.  This  interpretation
would  be furtherly confirmed by the fact
that  GLMM  occurrence  probabilities  and
OM  detectabilities  for M.  avellanarius are
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Tab. 2 - Results of niche overlap tests. (Schoener’s  D): niche overlap index; (Similar-
ity1):  similarity between the first species  vs. the second;  (Similarity2):  similarity be-
tween the second species vs. the first; (*): p < 0.05; (ns): not significant.

Hypo-
thesis Test

Schoener’s
D

Equiva-
lency

Similarity
1

Similarity
2

H1 Pocc_Gglis vs. Pocc_Mavellanarius 0.41 * ns ns

Psi_Gglis vs. Psi_Mavellanarius 0.26 * * ns
H2 Pocc_Gglis vs. Psi_Gglis 0.00 * ns ns

Pocc_Gglis vs. Det_Gglis 0.47 * ns ns
Pocc_Mavellanarius vs. 
Psi_Mavellanarius

0.32 * ns ns

Pocc_Mavellanarius vs. 
Det_Mavellanarius

0.71 ns * ns

H3 Pocc_Gglis vs. Pocc_Gglis_rep_1 0.08 * ns *

Pocc_Gglis vs. Pocc_Gglis_rep_2 0.07 * ns *
Pocc_Gglis vs. Pocc_Gglis_rep_3 0.15 * ns *

Pocc_Gglis vs. Pocc_Gglis_rep_4 0.52 ns ns ns
Pocc_Mavellanarius vs. 
Pocc_Mavellanarius_rep_1

0.02 * ns ns

Pocc_Mavellanarius vs. 
Pocc_Mavellanarius_rep_2

0.00 * ns ns

Pocc_Mavellanarius vs. 
Pocc_Mavellanarius_rep_3

0.08 ns * *

Pocc_Mavellanarius vs. 
Pocc_Mavellanarius_rep_4

0.33 ns * *
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explained by approximately the same pre-
dictors  through  relationships  with  the
same signs (except forest category  – see
Fig.  3 and  Fig.  S2).  Such  outcomes  point
out  how  modelling  species  occurrence
without correcting for imperfect detection
could lead to capture only where a species
is more likely to be detected, making it dif-
ficult  to  distinguish  between  predictions
that  reliably  reflect  ecological  processes
and those that are related to detectability
effects (Lahoz-Monfort et al. 2014, Guillera-
Arroita 2017). As a consequence, two spe-
cies  whose  occurrence  predictions  would
be affected by such kind of bias, would re-
veal  an  inconsistent  and  likely  unreliable
overlap pattern between their niches.

Few sampling replicates lead to a niche 
underestimation

It  is  noteworthy how GLMM predictions
based on the first three (for G. glis) and the
first two (for M. avellanarius) sampling rep-
licates were mostly different from the av-
erage occurrence probability predicted by
GLMM over all the four replicates. In partic-
ular,  the  statistical  significance  in  niche
equivalency tests for  the first  three repli-
cates of G. glis indicated these niches to be
non-identical  to  that  calculated  from  the
average occurrence probability over all the
replicates. In addition, niche similarity tests
for these three replicates were significant
only  in  one  direction  (from  Pocc_Gglis_
rep_1-3 niches to Pocc_Gglis one). This asym-
metry  suggested  that  G.  glis niches  esti-
mated by each of these sampling replicates
represent only a subpart of that calculated
from  the  average  occurrence  probability
over all the replicates.

We found a similar result also for M. avel-
lanarius, though involving only the first two
sampling replicates, likely due to the over-
all higher detectability of such species com-
pared  to  G.  glis (Fig.  4).  Such  evidences
point out how imperfect detection, besides
leading GLMM to estimate species detecta-
bility  rather  than  occurrence,  provokes  a
substantial  underestimation  of  species
niche,  by  introducing  a  high  number  of
false absences at occupied sites. A similar
outcome was also highlighted for SDMs by
Lahoz-Monfort  et  al.  (2014) and could  be
explained considering that  a  high rate of
false  absences  likely  results  in  an  incom-
plete sampling of  the  species  niche,  thus
affecting niche estimation and predictions.

Under this perspective, imperfect detec-
tion seems to affect niche estimation simi-
larly  to  the  bias  introduced  by  the  geo-
graphic truncation in sampling occurrence
data.  In  fact,  it  is  well  documented  how
covering the entire species niche is crucial
to assess niche overlap and change with-
out  bias  (Raes  2012,  Guisan  et  al.  2014).
Specifically,  an  incomplete  sampling  of
species  niche  may  prevent  capturing  the
full environmental variation under which a
species is known to occur, often resulting
in  a  niche  underestimation  (Raes  2012).
Therefore,  when  geographic  truncation

leads to environmental truncation, assess-
ment of niche overlap should be carefully
considered (Guisan et al. 2014).

In light  of  the environmental  truncation
effect  exerted  by  imperfect  detection  on
niche overlap estimates, an adequate num-
ber of  sampling replicates  is  highly advis-
able,  also  taking into  account that  differ-
ences in species detectability among sam-
pling replicates covering different periods
of the year may be a result of seasonal ef-
fects,  e.g.,  climate  (Mackenzie  &  Royle
2005). For instance, the overall increase in
detection  probability  observed  from  the
first  to  the  last  sampling replicate,  might
be a consequence of an intensified activity
to gather trophic resources as the cold sea-
son  was  approaching,  leading  the  two
dormice species to visit the sampling sites
more frequently than during the first repli-
cates (Sozio et al. 2016, Cornils et al. 2017).
While our results strongly support a role by
the number of sampling replicates to esti-
mate  niche  overlap,  we  cannot  exclude
that  alternative  sampling  protocols  (e.g.,
one-per-stratum) might have yielded differ-
ent outcomes from those showed here.

Conclusions
Our  study  emphasized  how  accounting

for  imperfect  detection  can  improve  the
statistical  significance  and  interpretability
of niche overlap estimates based on occur-
rence data. Such approach allowed to iden-
tify  alternative  ecological  strategies  be-
tween the two forest dormice  i.e., habitat
generalist  vs. habitat specialist. The edible
dormouse exhibited a strict link with high
forests, while the hazel dormouse showed
to  prefer  a  wide  variety  of  forest  types.
These differences could be mainly due to
the  different  feeding  habits  of  the  two
species, which are in turn affected by the
forest  management  system.  In  a  forest
management context, an accurate quantifi-
cation of niche overlap provides useful in-
formation to assess the effects of different
management practices on the occurrence
of these arboreal  species.  For  instance,  a
management strategy oriented at promot-
ing high forests would likely favor both the
specialist edible dormouse and the gener-
alist  hazel  dormouse,  as  the  two  species
share a  significant  portion of  their  niches
corresponding to forests with these char-
acteristics.  On  the  other  hand,  practices
enhancing  forest  stands  with  different
characteristics would primarily have a posi-
tive effect on the occurrence of  M. avella-
narius and not necessarily on G. glis.
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