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Accurate estimates of tree biomass are critical for forest managers to assess
carbon stock. Biomass of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.)
in southern China was assessed by three alternative methods. In the Separate
model  approach,  total  and component  tree biomass  was  directly  predicted
from a regression equation as a function of tree diameter and height. In the
Additive model approach, total biomass was predicted as the sum of predic-
tions from all component biomass equations. The Forecast Combination meth-
od involved combining predictions from the total biomass equation with the
sum of predictions from component biomass equations. Results indicated that
the Separate model method outperformed the Additive model method in pre-
dicting total  and component biomass. The drawback of the Separate model
method is that the total is not equal to the sum of its components. The Fore-
cast Combination method provided the overall best prediction for total and
component biomass, and still ensured additivity of component biomass predic-
tions.

Keywords:  Additivity,  Biomass  Predictions,  Cunninghamia  lanceolata,  Even-
aged Plantations, Tree Allometry

Introduction
Forest  biomass  comprises  the  arboreal

fraction of all existing plant mass in the for-
est, including stems, branches, leaves, and
roots  of  forest  trees  (Sanquetta  et  al.
2015). Due to its important role as carbon
pool  in  forest  ecosystems  (Fahey  et  al.
2010) and the laborious and costly process
of measuring trees in the forest, there is a
great  demand  to  accurately  predict  tree
biomass. A number of approaches for tree
biomass prediction have been put forward.
A widely used approach is the direct pre-
diction  of  biomass  using  allometric  rela-
tionships from tree measurements, such as
diameter  at  breast  height,  total  tree
height,  crown  radius,  and  wood  density
(Chave et al. 2005, Zhang et al. 2013, Good-
man et al. 2014, MacFarlane 2015).

There  are  two  methods  for  predicting

total  tree  biomass  with  allometric  equa-
tions: tree-level and component-level. The
tree-level method involves a regression to
predict total  tree biomass.  In the compo-
nent-level method, prediction of total tree
biomass is the sum of predictions of all tree
components  (leaves,  branches,  stem, and
roots),  obtained  from  separate  regres-
sions. There are strengths and weaknesses
for  each  method.  The  tree-level  biomass
model predicts total tree biomass directly,
but lacks detailed information on biomass
of stems, branches, leaves, and roots. On
the other hand, the component-level meth-
od provides more detailed information, but
total  tree  biomass  obtained  by  summing
component predictions could often suffer
from  accumulation  of  errors  and  subse-
quently poor accuracy and precision. More-
over, in the component-level method, the

sum of the biomass components can gen-
erate inconsistent results, as compared to
predictions from the total biomass model
(Parresol  1999,  Sanquetta  et  al.  2015).  To
eliminate this inconsistency, several model
estimation methods have been suggested
to  enforce  additivity  on  a  system  of  bio-
mass  equations  (Jacobs  &  Cunia  1980,
Reed & Green 1985, Tang et al. 2000, Parre-
sol 2001, Bi et al. 2004).

Forecast combination, introduced by  Ba-
tes & Granger (1969),  is  a method to im-
prove  forecast  accuracy  (Newbold  et  al.
1987).  This  method combines  information
generated from different models and dis-
tributes  errors  from  these  models,  thus
ensuring consistency of  outputs  from dif-
ferent models. Zhang et al. (2010) used this
method  to  combine  tree-level  and  stand-
level predictions of stand basal area.

The objective of this study was to evalu-
ate  current  methods  of  predicting  total
and component biomass against the fore-
cast combination method.

Materials and methods

Study sites
The plantations studied were at Weimin

farm  (Shaowu  city,  Fujian  province)  and
Nianzhu farm (Fenyi city, Jiangxi province)
in southern China (Fig. 1). Both sites belong
to the subtropical monsoon climate region.
In Weimin farm, mean annual precipitation
is  1768  mm,  mean  annual  temperature  is
17.7  °C,  and  monthly  mean  temperature
ranges from 6.8 °C in January to 28 °C in
July.  In  Nianzhu  farm,  mean  annual  tem-
perature and precipitation are 17.2 °C and
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1656 mm, respectively.
Weimin farm consisted of stands of 7-, 16-

and 28-year-old Chinese firs (Cunninghamia
lanceolata [Lamb.]  Hook.).  Nianzhu  farm
consisted of stands of 28-year-old Chinese
firs.  One  or  two  trees  in  each  diameter
class  (2-cm)  in  each  plot  (0.06  ha)  were
randomly  destructively  sampled,  totaling
39  sample  trees  in  Weimin  farm  and  24
trees in Nianzhu farm (Tab. 1).

Tree  diameter  at  breast  height  (D)  and
height  (H)  was  measured  after  the  tree
was felled.  The  fresh  and dry  weights  of
stem,  branch,  leaf  and  root  were  deter-
mined  separately.  From  each  stem,  we
sampled a  5-cm thick  stem disc cut  from
the base of each 1-m stem segment, three
subsamples  of  the  branches  and  leaves
from the upper, middle, and lower crown
(1/3  of  crown  length,  approximately  500

-1000  g  each),  and  samples  (500-1000  g)
from  the  stump,  large  structural  roots
(more than 10 mm), small roots (2-10 mm),
and fine roots (less then 2 mm), obtained
after excavation of the whole root system
to the extent of the crown projection area.
All  samples  were  fresh  weighted  in  the
field,  then  transported  to  the  laboratory
where they were oven-dried to a constant
weight  at  105  °C  and  dry  weighted.  Dry
weight was computed for each tree com-
ponent  by  extrapolating  the  ratio  of  dry
weight to fresh weight from subsamples.

Allometric equations
Standard  allometric  equations  predict

tree  biomass  as  a  power  function  of  D
(MacFarlane 2015). Other variables, such as
total tree height, have also been proven to
be important predictors (Chave et al. 2005,

Molto et al. 2013). The following two wide-
ly  used  equations  (Medhurst  et  al.  1999,
Lambert et al. 2005, Zhang et al. 2013, Zhao
et al.  2015,  Tang et al.  2016) were consid-
ered in this study (eqn. 1, eqn. 2):

(1)

(2)

where  Mi is  the biomass  (kg)  for  the  i-th
tree, a and b are the regression parameters
to  be  estimated,  Di is  the  tree  diameter
(cm), Hi is the total height (m), and εi is the
random error.

The  separate  model  method  involves
employing  separate  regression  models  to
predict total tree biomass and its compo-
nents: branch, leaf, root, and stem. Based
on  a  preliminary  analysis,  we  found  that
the eqn. 1 performed better than eqn. 2 on
modeling  branch,  leaf  and  root  biomass.
However,  in  terms of  the stem and total
biomass, the eqn. 2 was better than eqn. 1.
Thus,  the  following  equation  forms  were
selected (eqn. 3 to eqn. 7):

(3)

(4)

(5)

(6)

(7)

where all  variables are as defined earlier,
with  added  subscripts  to  denote  compo-
nent types.

The  models  were  separate  in  the  sense
that prediction of total tree biomass from
eqn. 7 did not equal the sum of predictions
for components from eqn. 3 to 6. In other
words, the equations were not constrained
to be additive.  Parameters of  eqn.  3 to 7
were  simultaneously  obtained  by  using
Seemingly  Unrelated  Regression  (SUR).
SAS  procedure  MODEL  (SAS  Institute  Inc
2009) was used for this purpose.

The Additive model approach was based
on  the  procedure  developed  by  Parresol
(2001). The following system of equations
was used to predict total tree biomass and
its components (eqn. 8 to eqn. 12):

(8)

(9)

(10)

(11)

(12)

where  the symbol  ^  on top of  a  variable
name denotes the predicted value for that
variable.

Eqn. 8 to 11 have the same forms as eqn. 3
to 6, respectively. Prediction of total tree
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Fig. 1 - Locations of the
Chinese fir study sites in

southern China.

Tab. 1 - Mean and standard deviation (SD) for tree variables and component biomass
of Chinese fir by location and age. Values in parentheses are ranges.

Location Age n Stats D (cm) H (m) Stem
 (kg)

Branch
 (kg)

Leaf
 (kg)

Root
 (kg)

Weimin 7 9 Mean 10.97 (5.7-16.3) 7.28 (4.9-9.3) 14.67 3.60 5.25 6.97
SD 3.84 1.61 9.08 2.41 4.25 5.56

16 14 Mean 14.19 (5.6-22.5) 11.48 (5.9-14.8) 34.26 2.63 3.45 11.38

SD 5.28 2.70 22.57 2.50 3.18 8.90

28 16 Mean 16.86 (8.7-27.8) 17.07 (10.3-22.7) 71.11 5.72 4.22 18.41

SD 5.82 3.30 51.04 7.16 3.68 16.03

Nianzhu 28 24 Mean 18.70 (7.5-30.2) 16.89 (10.2-23.2) 86.67 6.82 4.65 21.26

SD 7.13 3.57 64.90 6.97 4.53 18.18
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Total :M TSI=M̂ Bi+M̂ Li+M̂ Ri+M̂ Si+ε i

Stem:M Si=a11S (Di
2H i)

b11 S+ε i

M i=a1Di
b1+ε i

Root :M Ri=a10 RDi
b10R+ε i

M i=a2(Di
2H i)

b2+ε i

Branch :M Bi=a3 BDi
b3B+ε i

Leaf :M Li=a9 LDi
b9 L+ε i

Leaf :M Li=a4 LDi
b4 L+ε i

Branch :M Bi=a8 BDi
b8B+ε i

Root :M Ri=a5 R Di
b5 R+ε i

Total :M Ti=a7T (Di
2H i)

b7T+ε i

Stem:M Si=a6 S (Di
2H i)

b6S+ε i
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biomass  (eqn.  12)  was  obtained  by  sum-
ming  predictions  of  component  biomass.
Again, SUR was used to estimate parame-
ters of this system of equations.

Zhang et al. (2010, 2011a) applied the fore-
cast combination method to combine dif-
ferent types of models for predicting stand
basal  area  and  stand  survival.  A  similar
approach was applied in this study to pre-
dict  total  tree  biomass  by  combining:  (a)
direct prediction from the regression mod-
el  (eqn.  7);  and (b) indirect  prediction by
summing  predictions  from  component
models (eqn. 13):

(13)

where  M̂Fi is  the  prediction  of  total  tree
biomass from forecast combination, w1 and
w2, are weights, with w1 + w2 = 1,  M̂Ti is the
direct prediction of total tree biomass from
eqn. 7, and M̂TSi is the indirect prediction of
total tree biomass by summing predictions
from  component  biomass  equations.  De-
pending on the component biomass equa-
tions,  two methods of Forecast Combina-
tion were considered in this study: (i) FC1
that used the sum of predictions from the
Separate model (eqn. 3-6); and (ii) FC2 that
used the sum of predictions from the Addi-
tive  model  (eqn.  12).  The  weight  coeffi-
cients of the combined tree biomass model
could  be obtained by the optimal  weight
method (Zhang et al. 2010 – eqn. 14):

(14)

where (eqn. 15 to eqn. 18):

(15)

(16)

(17)

(18)

where εki is the prediction error for the tree
i using the method k, with k = 1, 2, and i = 1,
2, …, m, being m the total number of trees;
T is the transport matrix.

The  component  predictions  were  then
adjusted to add up to the combined esti-
mator for total tree biomass. This was ac-
complished by multiplying the component
predictions by  λ, the adjusting coefficient,
which is calculated as (eqn. 19):

(19)

In this study, the two-fold leave-one-out
cross  validation  scheme  was  used  for
model validation. First, the models were fit-
ted using data from the Weimin farm, and
then validated using data from the Nianzhu
farm. Second, we treated Nianzhu data as
the fit data and Weimin data the validation
data.  Evaluation statistics were computed
based  on  observations  pooled  from  the
two  validation  data  sets.  The  evaluation

statistics  of  mean  difference (MD),  mean
absolute difference (MAD), and R2 (Zhang
et al. 2010) were used to validate the mod-
els. Models with lower MD and MAD values
indicate a better fit to the data.

Results and discussion
The stem biomass ranged from 14.67 to

86.67 kg,  branches  from 2.63  to 6.82  kg,
leaves from 3.45 to 5.25 kg, and roots from
6.77  to  21.23  kg  (Tab.  1).  Stem  biomass
accounted for more than 50% of the total
tree biomass,  except  the stand of  age 7,
which  could  explain  the  same  equation
(eqn. 2) of stem and total tree biomass in
the preliminary analysis. The parameter es-
timates and their standard deviation errors
were slightly different between the Sepa-
rate  model  and  Additive  models  in  the
Weimin and Nianzhu farms (Tab. 2), being
their values more consistent across meth-
ods than across farms.  For total tree bio-
mass  prediction,  the  MD  value  obtained
using the FC1 method (the Forecast Combi-
nation method that used separate models)
was  83.46%  smaller  than  that  obtained
using  the  additive  model  and  41.04%
smaller than that of the FC2 method (Fore-
cast  Combination method that used addi-
tive  model).  Moreover,  the  FC1  method
produced the best R2 values, while the Sep-

arate  model  method  yielded  the  lowest
MAD value (Tab. 3). Regarding the predic-
tion of component biomass, the FC1 meth-
od had the best MAD and R2 values for all
components (except leaf biomass) and the
best MD values for two of the four compo-
nents (Tab. 4). 

Fig. 2 displays the predicted vs. observed
biomass of total and component biomass.
Most of biomass predictions were distrib-
uted near the straight line (y=x) using any
of the four methods used (Fig. 2). It can be
noticed  that  the  predictions  of  leaf  bio-
mass showed the lowest accuracy and pre-
cision among all the component biomass.

Additive vs. separate model
Parameters of the component regression

models  in  the  Additive  model  approach
were subjected to the constraint that the
sum  of  component  predictions  from  the
resulting  models  would  be  equal  to  the
total  biomass (Kozak 1970,  Bi  et al.  2004,
Dong et al.  2014). On the other hand, the
Separate  model  method  did  not  involve
any  constraints,  thus  its  parameters  re-
sulted  19.97%  and  6.86%  lower  for  MD,
MAD, respectively and 0.47% larger for R2

than those of the Additive model method
used for modeling total tree biomass (Tab.
3). Furthermore, the separate model meth-
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Tab. 2 -  Parameter estimates and standard errors (SE) of the biomass model using
Separate and Additive models in the Weimin and Nianzhu farms.

Parameter
Weimin Nianzhu

Estimates SE Estimates SE

a3B 8.2e-5 6.4e-5 8.84e-4 0.0013

b3B 3.7571 0.2425 2.9377 0.4520

a4L 0.0276 0.0215 0.0009 0.0013

b4L 1.7984 0.2574 2.7953 0.4455

a5R 0.0110 0.0047 0.0200 0.0103

b5R 2.5401 0.1383 2.3165 0.2503

a6S 0.0247 0.0053 0.0397 0.0131

b6S 0.9141 0.0236 0.8647 0.0346

a7T 0.0337 0.0066 0.0435 0.0156

b7T 0.9211 0.0215 0.8897 0.0376

a8B 0.0001 8.6e-5 0.0015 0.0021

b8B 3.7089 0.2966 2.7895 0.4583

a9L 0.0432 0.0396 0.0010 0.0015

b9L 1.6763 0.3055 2.7802 0.4539

a10R 0.0089 0.0041 0.0114 0.0058

b10R 2.6206 0.1480 2.4950 0.2641

a11S 0.0224 0.0049 0.0369 0.0121

b11S 0.9254 0.0239 0.8726 0.0344

Tab. 3 - Evaluation statistics for total tree biomass prediction by method. ( §): denotes
the best method based on each fitting statistic (MD, MAD, R2).

Method MD MAD R2

Separate model 0.5761 8.0296(§) 0.9772

Additive model -0.7199 8.6210 0.9726

Combined using Separate model 0.1191(§) 8.0469 0.9780(§)

Combined using Additive model 0.2020 8.0802 0.9776
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od produced the best MD, MAD and R2 val-
ues for all components. The sole exception
using the latter method was leaf biomass,
which showed a lower MD value (Tab. 4).
However,  due  to  lack  of  additivity  con-

straint, the sum of predictions from differ-
ent biomass components was not equal to
the prediction of total tree biomass in the
Separate model approach (Sanquetta et al.
2015). Therefore, the advantage of a com-

patible, additive system for total and com-
ponent  biomass  in  the  Additive  model
method  was  also  accompanied  by  a  de-
crease in the accuracy and precision of pre-
dictions.

Forecast combination
This  approach involves  a combined esti-

mator,  which  is  the weighted average of
the  predictions  from  the  total  biomass
equation  and  the  sum  of  predictions  of
component  biomass  from  either  (a)  the
separate model, or (b) the additive model.
Yue et al. (2008) used the variance-covari-
ance  method  to  calculate  weight  coeffi-
cients for the combined model.  Zhang et
al.  (2011b) reported  that  the  optimal
weight  method  (i.e.,  the  ordinary  least
squares  estimate  of  the  weights)  per-
formed  better  than  the  variance-covari-
ance  method.  Here,  the  optimal  weight
method was used to calculate weight coef-
ficients  of  combined  model  of  tree  bio-
mass. Compared to the method using the
additive model (FC2), the Forecast Combi-
nation  method  that  used  the  separate
model  (FC1)  gave  better  values  of  MD,
MAD, and R2 for total and component bio-
mass prediction (Tab.  3,  Tab. 4).  The only
exceptions  were  MD  values  for  leaf  and
stem biomass. The sum of component pre-
dictions from the Separate model was not
subject  to  any  constraint,  and  therefore
could  be  different  from  the  prediction
from the total biomass equation. The com-
bined  predictions  of  FC1  method  benefit
from non-constraint of the Separate mod-
el, thus increasing the accuracy and preci-
sion as compared to the FC2 estimation.

Forecast combination vs. additive 
model

Tree biomass additivity has long been rec-
ognized as a desirable property of biomass
estimation. Several  studies  have  success-
fully  solved  the  logical  inconsistency  be-
tween the components and total tree pre-
dictions  (Reed & Green 1985) by develop-
ing a system of additive biomass equations
estimated by the SUR method, thus provid-
ing  a  statistically  correlated  system  of
equations with restrictions (Parresol 2001,
Bi et al. 2010). In this study, a forecast com-
bination with  adjusted coefficient  (a  con-
sistent  value)  was  applied,  ensuring  the
additivity of the component biomass. It is
worth noting that the adjusted coefficient
may vary across the biomass components,
because  the  ratio  between  each  compo-
nent  depends  on  site  quality,  stand  den-
sity, age or tree size. 

The FC1 method outperformed the Addi-
tive model method in predicting the total
tree biomass, based on all three evaluation
statistics.  The  FC1  method  also  produced
better values of MD, MAD, and R2 for pre-
dicting branch, root, and stem biomass. For
leaf  biomass,  the  FC1  method resulted  in
better MAD, but worse MD and R2 values,
as compared to the Additive model meth-
od (Tab. 3, Tab. 4).
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Tab. 4 - Evaluation statistics for component biomass prediction by method. (§): de-
notes the best method based on each fitting statistic (MD, MAD, R2).

Component Method MD MAD R2

Branch Separate model -0.1511 1.9476 0.6601

Additive model -0.487 2.0743 0.6371

Combined using Separate model -0.0853(§) 1.9307(§) 0.6786(§)

Combined using Additive model -0.3997 2.0213 0.6755

Leaf Separate model 0.7034(§) 2.0181(§) 0.4952(§)

Additive model 0.4883 2.0838 0.4424

Combined using Separate model 0.7343 2.0768 0.4332

Combined using Additive model 0.5259 2.1002 0.4311

Root Separate model -0.2353 3.2619 0.8807

Additive model -0.2625 3.3982 0.8686

Combined using Separate model -0.0046(§) 3.2564(§) 0.8905(§)

Combined using Additive model -0.0466 3.2853 0.8872

Stem Separate model -0.298 4.7543 0.9832

Additive model -0.4586 4.9985 0.9831

Combined using Separate model 0.1986 4.2931(§) 0.9865(§)

Combined using Additive model 0.1224(§) 4.5509 0.9851

Fig. 2 - Ob-
served vs.
predicted
total and

component
biomass by
each meth-

od.
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Forecast combination vs. separate 
model

In the Separate model method, the pre-
diction of total tree biomass for each tree
is  directly derived from the total biomass
regression equation. The FC1 method com-
bined the information from this prediction
and the sum of predictions from regression
equations  for  each  component  biomass.
The result is an improvement of two (MD
and  R2)  out  of  three  fitting  statistics  for
total  tree  biomass  predictions  obtained
using the FC1  method,  as  compared with
the  Separate  model  method  (Tab.  3).
Indeed,  the  MD  value  derived  from  FC1
method was 79.33% smaller than that  ob-
tained using the Separate model method,
while  the  R2 value  from FC1  method  was
slightly  larger  than  that  of  the  Separate
model method. 

For  the component biomass, predictions
from  the  Separate  model  method  were
unadjusted predictions from the regression
models.  These  predictions  were  then
adjusted  such  that  the  resulting  sum
matched the combined estimator for total
biomass in the FC1 method. 

Based  on  all  three  evaluation  statistics,
the  FC1  method  showed  better  perfor-
mances  in  predicting  branch,  root,  and
stem biomass as compared to the Separate
model, whereas the latter method yielded
more accurate predictions of leaf biomass.
The  opposite  trend  observed  in  leaf  bio-
mass predictions  might be due to low R2

values  of  separate  leaf  biomass  model
(Tab. 4). In the forecast combination meth-
od,  the  implicit  assumption  was  that  the
relationship  between  observed  and  pre-
dicted  values  from  different  models  was
stable. If this relationship remains relatively
unchanged  from  the  sample  data  to  the
population,  then  the  combined  value
should  provide  better  predictions  than
those  by  any  model  alone  (Zhang  et  al.
2011b). However, in this study the relation-
ship  in  leaf  biomass  was  not  stable,  as
inferred from R2 values ranging from 0.43
to 0.49 (Tab. 4).

Conclusions
The Forecast Combination method takes

advantages of information from tree-level
and component-level models, by providing
an  estimator  that  combines  predictions
from  these  models.  To  ensure  additivity,
component predictions from the Separate
model  were  adjusted  to  match  the  com-
bined estimator for total tree biomass. This
approach  was  superior  to  the  Additive
model  method  in  predicting  total  tree
biomass and all of its components, except
for leaf biomass.
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