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Determining Pleiades satellite data capability for tree diversity 
modeling

Hassan Akbari, 
Siavash Kalbi

Modeling of the spatial distribution of tree species based on survey data has
recently been applied to conservation planning. Numerous methods have been
developed for building species habitat suitability models. The aim of this study
was to investigate the suitability of Pleiades satellite data for modeling tree
species diversity of Hyrcanian forests in northern Iran (Mazandaran Province).
One-hundred sample plots were established over an area of 2,600 ha and sur-
veyed for tree diversity, and the Simpson’s index (D), Shannon’s index (H’) and
the reciprocal of Simpson’s index (1/D) were calculated for each plot. Spectral
variables and several parameters derived by texture analysis were obtained
from multispectral images of the study area and used as predictors of tree
diversity of sample plots. Two different methods, including generalized addi-
tive models (GAMs) and multivariate adaptive regression splines (MARS), were
used for modeling. The results revealed a fairly good prediction of plot tree
diversity obtained using the developed models (adj-R2 = 0.542-0.731). Shan-
non’s H’ and Simpson’s 1/D indices were more accurately predicted using GAM-
based methods, while MARS models were more suitable for predicting Simp-
son’s D. We concluded that Pleiades satellite data can be conveniently used
for estimating, assessing and monitoring tree species diversity in the mixed
hardwood Hyrcanian forest of northern Iran.
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Introduction
The  exponential  increase  of  the  world

population in the last decades has brought
about an unparalleled human exploitation
of natural resources worldwide, leading to
a  global  reduction  of  the  naturalness  of
many environments. This may result in the
reduction of biodiversity as well as environ-
mental functions and ecological processes
which act to generate and maintain soils,
convert solar energy into plant tissue, reg-
ulate climatic parameters, and provide mul-
tiple forest products (Isik et al. 1997). The
Hyrcanian forest is the natural  ecosystem
with the highest plant and animal diversity
in Iran.  However,  these forests are being
more and more impoverished by degrada-
tion  and  conversion  to  other  land  uses.
Moreover, increasing and maintaining the
structural  diversity  in  forest  stands  has
become an important forest management
strategy to face the climate change.

Accurate and practical methods for esti-
mating biodiversity are needed to develop

effective  strategies  for  the  conservation
and  management  of  forests  (Hernandez-
Stefanoni & Dupuy 2007). In recent years,
the  increased  spatial  and  spectral  resolu-
tion of remote sensors has made it increas-
ingly feasible to conduct direct mapping of
biodiversity  through  mapping  plant  and
tree  canopies  and  assemblages,  and  in
some cases,  through the  identification of
individual species of trees. Recent studies
have indicated that remote sensing has a
high capability of providing useful informa-
tion  on biodiversity  (Hernandez-Stefanoni
& Dupuy 2007,  Kerr et al. 2001,  Nagendra
2001,  Mohammadi  &  Shataee  2007).  Nu-
merous remotely-detected parameters can
be used as proxies of the occurrence, dis-
tribution  and  abundance  of  species.  Re-
motely sensed data allow to quantify net
primary  productivity  (NPP)  through  the
Normalized  Difference  Vegetation  Index
(NDVI). This index has shown to be either
positively  or  negatively  associated  with
NPP, depending on the scale (Waide et al.

1999). Also, NDVI has been used in several
studies  for  modeling  species  occurrence
(Laurent et al. 2005) or species richness at
regional  and  local  scales  (Oindo  &  Skid-
more 2002,  Fairbanks & McGwire 2004). A
further factor related to species richness is
the structural and compositional complex-
ity of habitats, which can be measured by
either  the  variability  of  spectral  indices
(such as NDVI) or a band in the immediate
neighborhood  of  each  sampling  unit,  or
using  approaches  that  calculate  spectral
variability using multiple bands (Rocchini et
al. 2007, Oldeland et al. 2010). Such a spec-
tral variability is directly related to the het-
erogeneity of resource distribution (mixed
habitats),  which may be assessed by ana-
lyzing the variability in the reflectance val-
ues  among  pixels  using  the  texture  of  a
remotely  sensed  image  (Haralick  et  al.
1973). Mohammadi & Shataee (2007) inves-
tigated  the  possibility  to  estimate  tree
diversity using Landsat Enhanced Thematic
Mapper  Plus  (ETM+)  satellite  data  in  the
Hyrcanian forests of the Golestan Province
in  Iran.  Kalbi  et  al.  (2014) compared  two
nonparametric methods such as the classi-
fication  and  regression  tree  (CART)  and
Random forest (RF) for predicting tree di-
versity distribution using the High Resolu-
tion Geometric  sensor  (HRG) of  earth-ob-
serving  satellites  (SPOT-HRG)  data.  Bawa
et al. (2002) reported a statistically signifi-
cant relationship between species diversity
and the normalized difference vegetation
index (NDVI) derived from Indian Remote
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Sensing Satellite (IRS-1C) imagery,  so that
NDVI may be used to characterize areas of
high and low tree species richness in tropi-
cal forests where biodiversity loss is high.
Moreover,  regression analysis  approaches
have  been  broadly  applied  in  ecological
surveys  (McCullagh  &  Nelder  1997,  Bren-
ning 2005,  Wang et  al.  2005).  Regression
approaches have proven particularly useful
in modeling the spatial distribution of spe-
cies and communities (Guisan et al. 2006).
The  development  of  advanced  nonpara-
metric  regression  and  machine  learning
techniques are opening up many opportu-
nities for modeling tree diversity of greater
accuracy compared with  linear  regression
(Aertsen et al. 2010). Recently, generalized
linear  models  (McCullagh  &  Nelder  1997)
and generalized additive models (Hastie &
Tibshirani  1990)  using  presence-absence
survey  data  have  also  been  given  much
more  attention.   Presence-absence  niche
models use algorithms that can model the
presence  or  the  absence  of  a  species  as
binary response. Moisen & Frescino (2002)
investigated the performance of non-para-
metric  techniques  such as  CART,  general-
ized  additive  models  (GAM)  and  artificial
neural  networks  (ANN)  and  compared
them to parametric techniques for the pre-
diction of several species-independent for-
est  characteristics  in  the interior  western
United  States.  MARS  and  ANN  models
seemed to work best when applied to sim-
ulated  data,  though  their  application  to

real  data appeared less suitable, in which
case  a  linear  modeling  (LM)  approach
often  provided  comparable  results.  Over-
all, GAMs and MARS were marginally best
for modeling forest characteristics. 

The aim of  this  study was to:  (i)  invest-
gate the relationships between field-based
tree diversity and the spectral and textural
features of remote-sensed data (multispec-
tral  images of Pleiades satellite);  (ii)  com-
pare  two  statistical  non-parametric  tech-
niques (GAM and MARS) for modeling tree
species diversity.

Materials and methods

Study area
The study area is located within the Hyr-

canian forests, District 1 of Darabkola’s for-
ests, Sari, northern Iran (lat. 36° 28’ - 36° 33′
N, long. 53° 16′ - 53° 20′ W -  Fig. 1). The Da-
rabkola forest covers about 2,600 hectares
and  consists  of  natural  temperate  and
uneven aged stands. The main tree species
are  Quercus castaneafolia (chestnut-leaved
oak),  Carpinus  betulus (hornbeam),  Acer
velutinum (velvet maple), Alnus subcordata
(Caucasian  alder),  Tilia  begonifolia (linden
tree),  Parrotia  persica (Persian  parotia),
Ulmus glabra (wych elm),  Acer platanoides
(Norway  maple),  Diospyros  lotus (date
pulm),  Zelkova  carpinifolia (Siberian  elm),
Fagus orientalis (Oriental beech) and  Acer
cappadocicum (coliseum maple).

Field data
As species richness and diversity indices

depend on the size of the sample plot, phy-
tosociological  data  were  collected  based
on  a  systematic  sampling  method  during
the period 5 June to 15 July 2010. The size
and the number  of  quadrats  were deter-
mined  based  on  the  species  area  curve
(Misra 1968). The choice of the sample size
and the number of sampling units to select
is a key part of planning a survey. One hun-
dred square-shaped sample plots (60 × 60
m) were placed over the study area using a
stratified systematic sampling and an over-
lying grid of 450 × 500 m (see  Fig. 1, right
panel). For each plot, the main characteris-
tics (species, tree health, etc.) of trees with
a diameter at breast height (DBH) greater
than 7.5 cm were measured. The geograph-
ic  coordinates  of  each  plot  center  were
recorded using a Trimble 3 DGPS receiver.

The  Simpson’s  diversity  index  (D),  the
Shannon’s  diversity  index  (H′),  and  the
reciprocal  of  Simpson’s  diversity  index
(1/D)  were  calculated  for  each  sampling
plot based on the proportion of tree spe-
cies recorded during the field survey. Other
indices commonly used for describing the
forest structural diversity or the dissimilar-
ity  of  species  across  the  landscape  (e.g.,
mingling index, coefficient of segregation,
etc.  –  Pretzsch  1997,  Aguirre  et  al.  2003,
Hui et al. 2011) were not considered in this
study.

Preprocessing and processing of 
satellite images

Multispectral  images  of  the  Pleiades  sa-
tellite (Airbus Defence and Space, Munich,
Germany – http://www.intelligence-airbusd
s.com/pleiades/)  were  acquired  in  April
2013.  All  images  had  a  16-bit  radiometric
resolution.  Geometric  correction  and  or-
thorectification  were  applied  to  images
before  their  use.  The  geometrical  correc-
tion of the images was optimized by com-
paring the image data with vector layers of
the roads in the studied area. 

Pleiades satellite images have four spec-

349 iForest 10: 348-352

Fig. 1 - Location of the study area in the 
Mazandaran Province, northern Iran (left 
panel) and distribution of the sample plots 
in the study area (right panel).

Tab. 1 - Overview of the predictor variables selected by the tree biodiversity models
developed in this study.

Tree Diversity
Index

Modeling 
technique

Variables selected 
by the model

Simpson’s D GAM Mean NIR, Mean Red, Variance NDVI, Contrast NIR
MARS Entropy NIR, NDVI, NIR, Mean NIR

Shannon’s H′ GAM Mean Green, Mean Red, Variance NIR, Contrast NIR

MARS Mean NIR, NIR, Dissimilarity Red

Simpson’s 1/D GAM Mean Red, Variance Green, Variance NIR, Mean Red,

MARS Mean NIR, Contrast Red, Entropy NIR
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tral bands (Blue, Red, Green and NIR) with
a spatial resolution of 2 m and a panchro-
matic (PAN) band with a resolution of 0.5
m. In this study, we considered the afore-
mentioned  four  spectral  bands,  the  PAN
band,  the  Normalized  Difference  Vegeta-
tion Index (NDVI), and the derived texture
features of these bands as predictors in the
model analysis (Tab. 1).

Texture analysis is one of the most suit-
able processing methods to estimate the
characteristics of the forest structure from
remote-sensed  data  (Kayitakire  et  al.
2006). It  can be applied to estimate local
softness, roughness, smoothness and reg-
ularity of each variable based on the spatial
variation of  its  pixel  values  (Guisan et  al.
2006). For each variable considered in this
study, several parameters were derived by
texture  analysis,  such  as  mean,  variance,
entropy,  dissimilarity,  homogeneity,  angu-
lar second moment,  correlation and grey-
level-difference  vector  (Carr  &  Miranda
1998,  Soh & Satsoulis 1999,  Solberg 1999).
Texture analysis  was carried out  over the
study  area using  multiple  window  sizes
(9×9, 11×11, 13×13, 15×15 and 17×17 pixels), in
order to define the area used for statistical
calculations. 

All  the  above  derived  parameters  were
calculated over the whole study area at the
original pixel resolution. 

Spectral signature extraction of the 
plots

All the images (for both the original vari-
ables  and  the  derived  parameters)  were
aggregated at a resolution of 60 m (consis-
tently  with  the  size  of  the  field  plots  –
60×60 m) and their pixel values averaged.
Average values for each variable were then
extracted from the location of  each field
plot.

Statistical models

Generalized additive models
Generalized additive models (GAMs) are

semi-parametric regression models (Hastie
&  Tibshirani  1990).  Response  curves  in
GAMs are estimated with smoothing func-
tions,  allowing a  wide  range of  response
curves to be fitted to the input data (Yee &
Mitchell 1991). The main advantage of GAM
is its  ability  to deal  with highly non-linear
and non-monotonic relationships between
the response variable and a set of explana-
tory variables. Thus, GAMs are sometimes
referred  to  as  a  data-driven  rather  than
model-driven process (Guisan et al. 2006).
Being N the number of observations and p
the  number  of  explanatory  variables,  the
generalized  additive  model  is  defined  as
(eqn. 1):

where fj are smoothed functions estimated
from input data, μ represents the expected
value, G is the link function, and i = 1, 2, 3,
…,  N.  These  functions  are  based  on  the

assumption that E[fj(xj)] = 0 (j = 1, 2, …, N).
In  such  a  model,  the  dependent  variable
can  be  non-Gaussian  and  not  necessarily
continuous in nature, thereby allowing the
construction of more flexible models.

Multivariate adaptive regression splines 
(MARS)

The  multivariate  adaptive  regression
spline (MARS) method was first introduced
by Friedman & Stueltze (1981) to overcome
some  limitations  of  the  regression  trees.
MARS is a regression method that is suit-
able to high dimensional  data. The MARS
procedure builds  flexible  regression mod-
els by using basis functions to fit separate
splines to distinct intervals (ranges) of the
input  predictor  variables.  Both  the  vari-
ables in use and the end points of the inter-
vals (knots),  are located using an exhaus-
tive search procedure that relies on a spe-
cial  class  of  basic  functions  (Abraham  &
Steinberg 2001).  MARS models the target
variable  using  a  linear  combination  of
splines,  which  are  automatically  built
(matching the boundaries of each region)
from  an  increasing  set  of  piecewise-de-
fined linear basic functions (Moisen & Fres-
cino 2002). MARS automatically selects the
amount  of  smoothing  required  for  each
predictor as well as the interaction order of
the predictors. It is considered a projection
method where variable selection is not of
concern,  though  the  maximum  level  of
interaction has to be determined. We con-
sidered 15 variants of these models formed
by different  combinations of  the parame-
ter  nk that sets the maximum number of
terms before pruning; two variants (1 and
2) of  the parameter  degree that  sets  the
maximum degree of interaction;  and four
variants (0.01, 0.001, 0.005 and 0.0005) of
the  parameter  thresh specifying  the  for-
ward stepwise stopping threshold.

Model evaluation and performance 
assessment

The  available  data  were  randomly  split
into two subsets, 70% of the data for mod-
eling and 30% for validation and testing. For
each tested model, several statistics were
recorded, including the squared coefficient
of  determination  (R2)  and  the  adjusted
coefficient of determination (adjusted R2).
The  latter  was  used  to  estimate  the  ex-
pected shrinkage in R2 due to over-fitting
and the inclusion of too many independent
variables  in  the  regression  model.  Thus,
when the adjusted R2 value is much lower
than the R2 value,  the regression may be

over-fitted  to  the  sample,  and  therefore
poorly generalizable. 

Model  performances  were  assessed  on
the validation subset using several regres-
sion diagnostics  metrics  such as  the  root
mean square error (RMSE), relative RMSE,
bias and relative bias, calculated as follows
(eqn. 2 to eqn. 5):

where  esti is  the  value  predicted  by  the
model  at  the  i-th  pixel  of  the  validation
subset,  obsi is  the observed values at the
same pixel and m is the number of pixels in
the  validation  subset.  In  addition,  some
common  graphical  diagnostic  tools  (Mc-
Roberts et al. 2007) were used to evaluate
the quality of model performances.

Results
A  high  tree  species  diversity  was  ob-

served in the study area, as inferred from
the  three  diversity  indices  obtained  from
the field survey. The main descriptive sta-
tistics of the Simpson’s diversity index (D),
the Shannon’s diversity index (H’), and the
reciprocal of the Simpson’s diversity index
(1/D) in the two datasets (training and vali-
dation  subsets)  are  reported  in  Tab.  2.
Overall,  D  varied  between  0.105  to  0.86
across the analyzed sample plots, while H’
ranged  from  0.12  to  2.56  and  1/D  ranged
from 1.105 to 4.02. 

Regarding the window size used for tex-
ture  analysis,  the  highest  correlation  be-
tween texture-derived parameters  and all
tree diversity indexes was found using the
window  size  9×9  pixels,  which  was  then
used  in  modeling  to  extrapolate  the  tex-
ture features of the analyzed spectral vari-
ables.

All the models were critically investigated
for confounding factors and checked for all
basic assumptions. The number of predic-

iForest 10: 348-352 350

Tab. 2 - Descriptive statistics of model and validation samples for indices. (SD): stan-
dard deviation.

Tree Diversity
Index

Training Dataset Validation Dataset

N Mean Min Max SD N Mean Min Max SD

Simpson’s D 70 0.47 0.11 0.76 0.17 30 0.57 0.13 0.76 0.12
Shannon’s H′ 70 1.28 0.12 2.56 0.47 30 1.49 0.14 2.17 0.41

Simpson’s 1/D 70 2.11 1.10 4.01 0.64 30 2.50 1.24 3.94 0.63
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tor  variables  entering the models  ranged
from two to  eight,  differing among  both
the models  and the diversity indices con-
sidered. For example, regarding the index
D, the best predictors were: NIR (mean and
contrast),  Red,  and NDVI (variance) using
the  GAM  models;  and  NIR  (mean  and
entropy) and NDVI using the MARS model
(Tab. 1). Overall, NIR (both as variable and
its  texture-analysis  derived  parameters)
was the most represented predictor across
models and indices (12 times), followed by
Red (6 times),  and NDVI and Green band
(both 2 times).

The performance statistics for each mod-
el are summarized in Tab. 3. The proportion
of the total variance accounted for by the
different models (as inferred from the adj-
R2 values) ranged from 54.2% (MARS, 1/D)
to 73.1% (MARS, D), indicating a fairly good
predicting ability of the models.     

The best model performance was evalu-
ated based on the highest R2,  highest ad-
justed R2 and lowest RMSE, RMSEr Bias and
Biasr values.  In  the  most  cases,  the  best
goodness-of-fit between the predicted and
the observed tree diversity index values at
the field plots was obtained by the GAM,
which had the lowest values for RMSE and
Bias and the highest adjusted R2. However,
the  best  fitting  was  obtained  when  the
tree  diversity  MARS  model  was  used  to
predict the Simpson’s index D.

Discussion
Hyrcanian forests of  northern Iran com-

prise a highly diverse vegetation cover and
are  increasingly  degraded  and  converted
to  other  land  uses.  Understanding  the
main factors that influence the spatial dis-
tribution of both local species richness and
spatial  species  turnover  is  important  to
adequately  map  tree  diversity.  In  this
study,  we assessed the utility  of  Pleiades
satellite  image  data  and  two  regression
techniques for modeling tree diversity in a
Hyrcanian Forest. These results are similar
to those obtained by other studies aimed
at identifying broad patterns of  tree spe-
cies diversity by satellite data (Hernandez-
Stefanoni  &  Dupuy  2007,  Mohammadi  &
Shataee 2007, Wang et al. 2005). 

All  the  statistical  models  applied  in  this
study provided fairly successful predictions
of  forest  tree diversity  based on remote-
sensed data. In particular, GAM and MARS
modeling regressions were successfully ap-

plied  to identify those parts  of  the study
area where tree species richness is above
the average. In a comparable study,  Wang
et  al.  (2005) report  that  GAM  performed
better and showed a better adaptability to
extreme  observations  than  other  non-lin-
ear  and  non-parametric  techniques,  ac-
cording to previous studies (Aertsen et al.
2010).  Brenning  (2005) showed  that  the
application of simple models, such as GAM,
are similarly  successful  as  compared with
complex machine learning techniques. Our
study confirm these findings, as GAM mod-
els provided in most cases a better fitting
than MARS based on most evaluation mea-
sures. 

The results of this study are not directly
comparable with other relevant researches
in particular regarding the use of variables
derived  by  texture  analysis  as  predictors.
Furthermore, most studies published in the
literature used satellite imagery with differ-
ent  spectral/spatial  resolutions  and/or
were conducted in different forest condi-
tions.  

Our results showed that Pleiades satellite
data and non-parametric  regression mod-
els could be conveniently used by resource
manager  to  achieve  useful  indications  on
tree diversity distribution over large areas
in northeastern Iran,  as well  as  to assess
and monitor the status of tree diversity of
Hyrcanian forests.

A strong limitation faced by conservation
biologists  and  managers  of  natural  re-
sources is the lack of information concern-
ing  species  distribution  patterns.  To  this
purpose, precise biodiversity mapping pro-
duced by accurate modeling could help in
the  selection  and  effectiveness  of  pro-
tected natural areas.
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