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Integrating area-based and individual tree detection approaches for 
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Remote sensing has been increasingly used to assist forest inventory. Airborne
Laser Scanning (ALS) systems can accurately estimate tree height in forests,
and are being combined with more traditional optical images that provide fur-
ther details about the horizontal structure of forests. To predict forest attrib-
utes two main techniques are applied to process ALS data: the Area Based
Approach (ABA), and the Individual Tree Detection (ITD). The first part of this
study  was  focused  on  the  effectiveness  of  integrating  ALS  data  and  aerial
imagery to estimate the wood volume in  Eucalyptus urograndis plantations
using the ABA approach. To this aim, we analyzed three different approaches:
(1) using only ALS points cloud metrics (RMSE = 6.84%); (2) using only the vari-
ables derived from aerial images (RMSE = 8.45%); and (3) the integration of
both  1  and  2  (RMSE  =  5.23%),  which  underestimated  the  true  volume  by
2.98%. To estimate individual tree volumes we first detected individual trees
and corrected the density estimate for detecting mean difference, with an
error of 0.37 trees per hectare and RMSE of 12.68%. Next, we downscaled the
total volume prediction to single tree level. Our approach showed a better
result of the overall volume in comparison with the traditional forest inven-
tory. There is a remarkable advantage in using the Individual Tree Detection
approach, as it allows for a spatial representation of the number of trees sam-
pled, as well as their volume per unit area – an important metric in the man-
agement of forest resources.

Keywords:  Forest  Inventory,  Airborne  Laser  Scanning,  Treetop  Detection,
Eucalyptus Plantation, Area-based Approach, LiDAR

Introduction
Intensively  managed  forest  plantations

have an important role, both nationally and
internationally,  due to their  ability  to effi-
ciently  produce  large  quantities  of  bio-
mass. This biomass can be utilized in forms
suitable for bioenergy or, after processing
into cellulose-derivatives, in materials such
as paper. The myriad uses of fibers derived
from  intensively  managed  plantation  for-
ests  can  aid  in  the  reduction  of  anthro-
pogenic pressures on natural forests, while
simultaneously generating millions of jobs

(Payn et al. 2015).
In  Brazil,  4.4  million jobs  are  generated

directly  and  indirectly  by  forest  planta-
tions,  and  the  total  reforested  area  ex-
ceeds  7.6  million  hectares  (IBA  2014).  Of
this  area,  72%  is  composed  of  Eucalyptus
spp., a key genus in Brazilian forest planta-
tions. The reasons for the success of  Euca-
lyptus spp.  plantations  in  Brazil  include
Eucalyptus’ rapid growth, genetic improve-
ment, and its tolerance of a wide range of
climatic conditions (Silva et al. 2014).

In order to manage the growth and yield

of these plantations, annual forest invento-
ries are required. In general, the traditional
approaches  to  conducting  plantation  in-
ventories follow the precepts of sampling
theory, which is based on ground measure-
ments collected from simple random sam-
pling plots. The forest attributes of interest
are then inferred for an entire stand based
on observations collected at each sample
plot  (Paris  &  Bruzzone  2015).  However,
considering the difficulties in field surveys
such as sampling error, bias, and the inten-
sive use of time and labor, remote sensing
represents an important additional tool for
monitoring large areas accurately and effi-
ciently.

Both active and passive remote sensors
have  been  presented  as  feasible  alterna-
tives  for estimating forest  variables.  High
spatial  resolution optical  data is  useful  at
providing spectral  information on  species
and condition (Wang et al.  2004,  Monnet
et  al.  2010),  while  active  remote  sensing
technologies, such as Airborne Laser Scan-
ning (ALS), can provide highly accurate for-
est height data (Wulder et al. 2000). When
predicting forest inventory attributes using
ALS  data  or  aerial  images,  two  main  ap-
proaches  can  be  applied:  the  Area-based
Approach (ABA – Næsset 2002, White et al.
2013)  and  the  Individual  Tree  Detection
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(ITD) approach (Popescu et al. 2002, Kaarti-
nen et al. 2012).

To  estimate  volume  in  Eucalyptus spp.
plantations  Packalén  et  al.  (2011) applied
the  ABA  approach.  In  the  ABA,  the  re-
sponse  variable  (e.g.,  wood  volume  per
unit  area in m3 ha-1)  is  aggregated over  a
grid  cell  of  predetermined size or  over  a
plot  size  (Breindenbach  &  Astrup  2014).
This  response  variable  is  estimated  using
predictor variables, which are derived from
the ALS metrics directly or indirectly, such
as  the  mean  height,  height  percentiles,
densities and proportions, or from image,
such as the reflectance (Næsset 2002, Zhu
& Liu 2015).

The ABA approach is most suited to the
estimation  of  a  number  of  crucial  forest
stand attributes over large areas (Næsset
2002,  White et al. 2013). The prediction of
stand  attribute  variables  from  ALS  data,
such as biomass, volume, basal area, mean
diameter,  or  average  height  have  been
shown to  have  similar  or  improved  accu-
racy  compared  to  traditional  inventory
methods  (White  et  al.  2013).  However,
when tree-level  information such as stem
number  or  species  is  desired,  the  ABA
approach is less suitable (Breindenbach &
Astrup 2014).

In this case, the ITD approach is the most
appropriate  to  estimate  individual  tree
characteristics.  However,  algorithms  nor-

mally used in the ITD approach detect, on
average, 75% of trees (Persson et al. 2002,
Monnet et al. 2010). Therefore, the use of
automatic ITD may lead to the non-detec-
tion of some trees, and can interfere with
forest attributes prediction (Breindenbach
& Astrup 2014).

Vastaranta et al. (2011) applied an alterna-
tive  method  to  overcome  the  shortcom-
ings of ITD detection, involving the aggre-
gation of  the tree numbers in a grid cell,
according  to  ABA.  By  aggregating  trees
into grid  cells  it  is  possible  to know how
many trees were detected or not in each
cell,  so  long  as  detection  rates  are  com-
pared with ground truth data and the most
appropriate methodology to correct devia-
tions is  used.  This  approach,  also used in
this  study,  can lead to a  reduction in the
number of systematic errors, and to an in-
creased accuracy in the estimation of  the
number  of  trees  per  hectare,  a  variable
extremely  important  to  forest  managers
(Simões  2008,  Breindenbach  &  Astrup
2014).

According  to  Packalén  et  al.  (2011),  the
advantage of using ITD approaches is that
the  correct  detection  of  individual  trees
could reduce the number of plots needed
for  an  accurate  and  unbiased  inventory.
Breindenbach  &  Astrup  (2014) also  note
that  the  ITD approach is  inherently  more
intuitive  than  ABA  because  the  response

variables  are  related  to  each  tree  (the
smallest  unit  in  a  management  system),
providing coordinates that  can be tied to
individual  tree  growth,  as  well  as  explicit
links to tree growth and yield models.  In
the case of  ALS data,  ITD approaches re-
quire high density point clouds, which can
be impractical because of the cost of data
collection (Mehtätalo et al. 2014).

The merging of  ALS and optical  remote
sensing data can assist in the accurate esti-
mation  of  forest  attributes,  with  algo-
rithms based on height or brightness (Hu-
dak  et  al.  2002,  Næsset  2002,  Wulder  &
Seemann 2003,  Wang et al. 2004,  Roberts
et al. 2005, Monnet et al. 2010, Packalén et
al.  2011).  Saarela  et  al.  (2015) integrated
ALS  and  Landsat  image  data  to  improve
accuracy  of  timber  volume  estimation  as
compared  with  estimates  based  on  ALS
and images variables alone.  This  compari-
son is also employed in the present study,
though we used high spatial resolution im-
ages.  For  instance,  the  ABA  and  ITD  ap-
proaches  can  be  combined  to  estimate
wood biomass or volume in forest planta-
tions  (Næsset  2002,  Brandtberg  et  al.
2003).

In this study, we use ABA and ITD to esti-
mate stand volume in Eucalyptus spp. plan-
tations using ALS and high spatial  resolu-
tion multispectral image data. To this goal,
we first modeled the stand volume using
standard ABA approaches,  using different
combinations  of  ALS-based  and  image-
based metrics as independent model vari-
ables.  Second,  we used  an  ITD-based ap-
proach to estimate tree count, applying a
correction method to improve single tree
detection,  which  is  integrated  with  the
stand volume predicted using ABA. Finally,
we  merge  the  two  approaches  (ITD  and
ABA), that yields volume predictions at the
single tree level. We conclude by discussing
the possibilities of using ABA for individual
tree volume predictions.

Materials and methods

Study area
The study was performed in a forest plan-

tation  owned  by  FIBRIA  S.A.  company,
located  in  São  Luiz  do  Paraitinga  in  São
Paulo State, Brazil (23° 33′ S, 45° 34′ W and
23° 30′ S, 45° 31′ W – Fig. 1). The dominant
species in the study area is  Eucalyptus uro-
grandis, which is a hybrid between Eucalyp-
tus  urophylla and  Eucalyptus  grandis (Fer-
reira 1979). According to Köppen & Geiger
(1954),  the  climate  is  humid  subtropical
(Cwa)  characterized  by  cold  winters  and
rainy  summers,  with  average  annual  pre-
cipitation of 1210 mm and a mean monthly
temperature of 20.2 °C (CEPAGRI 2014). The
topography of the study area is  complex,
with elevations varying from 974 to 1266 m
a.s.l. and the average slope is 24.3 degrees.

The forest stands in the study area were
planted in December 2006 and harvested
between April  and May  2013,  following  a
standard 6.5 year rotation period. All  har-

297 iForest 10: 296-302

Fig. 1 - The study area near São Luíz do Paraitinga (São Paulo, Brazil), including the 6.5
year-old Eucalyptus urograndis forest plantation analyzed in this investigation.
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vested wood was taken to a mill. The trees
were planted in rows with fixed tree spac-
ing (2 × 3 m), resulting in a density of 1667
stems per hectare.

Field measurements
Reference data were based on field mea-

surements collected at 48 circular plots (r =
11.28 m, area of 400 m²) between April and
May  of  2013  prior  to  harvesting.  In  each
plot,  all  diameter  at  breast  height  (DBH)
were recorded, and the height of 10 trees
were measured.  Heights for all  remaining
trees  in the plot  were then estimated by
applying  the  Curtis  (1967) hypsometric
model, adjusted based on the 10 measured
trees  in  each plot.  Tree volume was esti-
mated with locally-developed volume mod-
els  based  on  the  model  proposed  by
Schöepfer (1966 – Tab. 1). The geographical
location of the plots were obtained using
high-precision  GPS  receivers  (ProXRT®,
Trimble  Inc.,  Sunnyvale,  CA,  USA)  at  the
center of each plot.

After harvesting, all wood arriving at the
mill  was  weighed.  The wood density  was
obtained according to Archimedes’  princi-
ple  and,  therefore,  the  total  volume  of
wood  at  the  mill  could  be  defined  by
weight-to-volume  (W-V)  relationships  ob-
tained  in  the  density  measurement  proc-
ess. A complete description can be found
in Batista (2014).

Remote sensing data
ALS data were acquired by a RIEGL LMS -

Q680I® system  (Riegl  Gmbh,  Horn,  Aus-
tria)  simultaneously  on  15  January  2012
with  aerial  photographs  under  free-cloud
conditions. The average ALS point density
was 5  pulses per m2.  An orthophoto was
generated from aerial images with a pixel
size of 0.15 cm. The 4 spectral bands were
blue (429-514 nm), green (514-600 nm), red
(600-676  nm)  and  near-infrared  (695-831
nm).

Initially we separated ALS ground returns
from the vegetation returns, to generate a
15 cm resolution DTM and DSM, which is
the  minimum  size  resolution  based  on
point  density  (Mccullagh 1988).  The DTM
was used to normalize the point cloud, fol-
lowed by the generation of the most usual
metrics (such as tree height, canopy cover,
topography, image bands and ratios) from
each type of  remote sensing data at a  5-
meter resolution. This resolution was cho-
sen following the ABA concept that  pixel
size  should  be  larger  than  a  tree  crown
(White  et  al.  2013),  with  Eucalyptus spp.
crown diameter varying from 2 to 3 meters
in the study area.

Predictor variables
We extracted LiDAR metrics from the ALS

data (McGaughey 2013, White et al. 2013, R
Developing Core Team 2007,  Saarela et al.
2015) to extract image metrics (bands, ra-
tios between bands and Normalized Differ-
ence Vegetation Index), as listed in Tab. 2.
We generated the most  common metrics

(such as tree height, canopy cover, topog-
raphy, image bands and ratios) from each
type of remote sensing data by describing
the  properties  of  the  point  clouds  and
spectral properties of the images. For the
generation  of  these  metrics,  only  first
returns of the ALS point cloud were used
and the reflectance value of each pixel in
the aerial image was aggregated into a 5 ×
5 m grid cell. These metrics were then used
in  subsequent  statistical  modeling  as  ex-
planatory  variables.  In  total,  39  metrics
were generated (Tab. 2).

Modeling approach to estimate total 
wood volume

The first step was the estimation of wood
volume  using  the  ABA.  Three  different
methods were applied,  depending on the
input  data  source.  In  the  first  approach,
only variables derived from ALS data were
used,  in  the  second  approach  only  vari-
ables derived from the imagery were used,
and in the final one we combined both sets
of variables.

One  of  the  most  important  considera-
tions when working with a large number of
predictor  variables in a  multiple linear  re-
gression is variable selection. To that end,
we  applied  the  Best  Subset  Selection
(BSS), which matches an appropriate mod-

el  to each model  size (James et  al.  2014,
Lumley  2014,  R  Developing  Core  Team
2007). To select a model among those sug-
gested by BSS,  we applied a k-fold cross-
validation (k=5). The application of a cross-
validation,  similar  to  the  leave-one-out
method, allows for a better understanding
of model behavior, especially when using a
database that  was  not  utilized for  model
adjustment (James et al. 2014). After apply-
ing the cross-validation we chose the mod-
el according to the RMSE. In this study, we
used a  confidence interval  with  a  p-value
equal to 0.05 generated from 1000 simula-
tions.

The total volume of the forest stands was
obtained by the mean ABA estimation mul-
tiplied by the total area.

Variable selection and model adjustment
The k-fold estimate of RMSE is computed

by averaging the values obtained by eqn. 1:

where CVk is the k-fold cross validation and
MSE is  the mean square error. The linear
model  assumptions  were  verified  accord-
ing  to  (Peña  &  Slate  2006),  where  the
assumptions were verified for each of the
chosen  models  with  statistical  tests  and
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Tab. 1 - Descriptive statistics of the reference plots (n=48) for the basal area (G), diam-
eter at breast height (DBH), total height (HT), dominant height (HDOM) and cellulose
volume without bark (V).

Variable Min Max Mean SD
G (m2 ha-1) 27.08 39.16 33.96 2.75
DBH (cm) 13.80 17.34 16.00 0.65
HT (m) 20.82 27.93 24.89 1.70
HDOM (m) 25.20 33.27 29.79 2.06
V (m3 ha-1) 223.19 391.99 331.16 37.27

Tab.  2 - List of  the variables selected for model  inclusion in each of  the three ap-
proaches adopted in this study.

Data Category ALS metrics Acronym
ALS Height Minimum height hmin

Maximum height hmax

Mean height hmean

Variance of height hvar

Standard deviation of height hsd

Coefficient of variation of height hcv

Mode of height hmode

Kurtosis of height hk

Height percentiles: 1st, 5th, 10th, 20th, 
25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th,
90th, 95th, 99th

hp01, hp05, hp10, hp20, hp25, 
hp30, hp40, hp50, hp60, hp70, 
hp75, hp80, hp90, hp95, hp99

Cover Number of first returns above mean Cab mean

Number of returns above 2 m Cab2m

Percentage of canopy C%

Topography Slope (°) S
Mean altitude Amean

Aerial 
Image

Spectral 
Properties

Band 1 - blue B1
Band 2 - green B2
Band 3 - red B3
Band 4 - near infrared B4
Simple ratio between bands B1/B2, 
B1/B3, B1/B4, B2/B3, B2/B4, B3/B4

B1/B2, B1/B3, B1/B4, 
B2/B3, B2/B4, B3/B4

Normalized Difference Vegetation Index NDVI
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graphical  analysis  (Peña  &  Slate  2014,  R
Developing  Core  Team  2007).  The  ap-
proach was then chosen based on the low-
est  RMSE  and  the  linear  model  assump-
tions  analysis,  generating  a  predicted
wood  volume  map  for  the  entire  study
area.  This  prediction  was  validated  with
stand  inventory  data  and  information
about  tree  volume  received  by  the  mills,
after harvesting.

Individual tree volume

Individual Tree Detection based on aerial 
images

For the second step we used high resolu-
tion multispectral images for detecting in-
dividual treetops, applying the local maxi-
mum filtering  method,  where  the  central
location of the crown is assigned the high-
est spectral value (Wang et al. 2004, Kumar
2012). We applied fixed and varying sizes of
moving window,  based on the methodol-
ogy proposed by Kumar (2012) and Pereira
(2014). The window sizes varied from 0×3
m, 0×5 m, 0×7 m to 0×9 m (Kumar 2012, Pe-
reira  2014).  The  individual  tree  detection
procedure was performed for each of the 4
spectral bands, and the first principal com-
ponent (first PCA) of the bands (Wang et
al. 2004). According to Wang et al. (2004),
the  PCA  effectively  aggregates  a  large
quantity  of  information  and  shows  good
results for ITD.

To generate the final ITD product, all five
intermediate outputs were used. First, the
layer with the highest number of detected
trees,  with  their  locations  visually  cor-

rected,  was  taken  as  the  basis  for  ITD.
From this  layer,  we removed all  the tree-
tops in a 0.7 m buffer around each tree to
avoid multiple peaks from single tree. Tree-
tops detected in the second layer, outside
this  buffer  were  added  creating  a  new
layer  of  additional  ITD  points.  This  layer
was then taken as the new basis  for ITD.
This procedure was repeated until all layers
had contributed to the generation of a sin-
gle ITD layer.

Merging the ITD approach with ABA
Based on the final ITD layer, stem counts

were  aggregated into  5  ×  5  m grid  cells,
according to ABA. Following this, the num-
ber of trees in each grid cell was identified
by local maxima derived from the ITD ap-
proach, resulting in a graphical representa-
tion of the number of trees per hectare for
the entire study area.

Detection and correction of the mean 
difference (MD) in total area

The  mean  difference  (MD)  detection  of
the ITD approach was done by comparing
the number of detected trees and the num-
ber  of  observed  trees  in  the  inventory
plots. The difference between the two was
considered  the  response  variable,  while
the ALS and image variables were consid-
ered the predictor variables, leading to the
modeling of the ITD mean difference, and
its prediction for the entire study area. In
our case this MD was modeled with 3 vari-
ables, maximum height, slope, and ITD de-
tection,  as  explanatory  variables.  These
variables  were  selected  by  applying  the

Best  Subset  Selection  method  and  cross-
validation,  as  described  earlier.  The  MD
detection model was applied to the entire
study area, representing the MD per hec-
tare, to correct the initial estimates of tree
count per pixel.

Estimating individual tree volume
In order to generate the volume per tree

in each 5 × 5 m cell, the previously-estimat-
ed stand volume for the entire study area
(m3 ha-1),  obtained  by  the  integration  of
ALS data and high-resolution imagery, was
divided by the number of trees per hectare
detected by the ITD approach.

Results

Modeling approach to estimate total 
wood volume

The best fitting models obtained by cross-
validation contained 4 parameters, includ-
ing  the  intercept,  for  all  the  three  ap-
proaches  tested  (Tab.  3).  In  the  first  ap-
proach (using ALS data variables only), the
chosen  model  was  based  on  height  per-
centiles  (hp20,  hp40,  hp50)  and  elevation
(Amean). In the second approach, where only
image predictors were used,  the selected
variables were B3, NDVI, B1/B3 and B1/B4. In
the  third  approach,  where  both  remote
sensing data sources were used as predic-
tors, two ALS-based and two image-based
variables  were  selected  (hmode,  Amean,  B4,
B2/B3). The RMSE for each approach was
6.84%,  8.45%  and  5.23%,  respectively.
Among  the  three  analyzed  approach,  we
chose the model that combined ALS data
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Tab. 3 - Fitting statistics of the best regression models used to estimate the total tree volume in the investigated area with three dif -
ferent  approaches.  (MD):  Mean  difference;  (RMSE):  root  mean  squared  error;  (Adj):  Adjusted.  For  the  acronym  of  variables
included in the models, see Tab. 2.

Approach Regression Model Form Adj-R² MD MD % RMSE RMSE %
p-value
(t-test)

(1) ALS data -585.17 + 22.48·(hp20) -165.27·(hp40) + 
170.09·(hp50) + 0.22·(Amean)

0.65 0.032 0.001 22.79 6.84 0.993

(2) Aerial images -585.17 + 7.859·(B3) -16167.59·(NDVI) 
-5101.24·(B1/B3) + 15192.15·(B1/B4)

0.48 0.64 0.19 28.17 8.45 0.883

(3) Both datasets -625.16 + 27.74·(hmode) + 0.32·(Amean) + 1.97·(B4) 
-377.84·(B2/B3)

0.79 -0.06 -0.018 17.43 5.23 0.983

Fig. 2 - Scatterplot of the observed and predicted values of stand volume for each of the approaches analyzed in this study. (1) ALS
data; (2) aerial images; (3) both datasets.
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and  image  information,  according  to  the
corresponding adjusted R² value (Tab. 3).

Fig.  2 displays  the  relationship  between
the observed and predicted values of stand
volume  obtained  for  each  approach.  Al-
though  the  homoscedasticity  of  residuals
was  not  rejected,  their  distribution  was
asymmetric  in  the  first  and  second  ap-
proach, suggesting non-normality, while in
approach  3  the  distribution  of  residuals
showed  to  match  a  normal  distribution.
Therefore, the third approach was selected
for  wall-to-wall  stand  volume  prediction
and  subsequent  comparisons  with  the
inventory and mill-based volumes as refer-
ence values.

Across  the  whole  study  area,  the mean
estimated  volume  per  hectare  based  on
the  ABA  method  was  319.9  m3,  totaling
44,466.1  m3.  When  this  result  was  com-
pared  with  the  volume  measured  at  the
mill  (considered  the  true  volume  by  the
company), we found a difference of 2.98%,
while when comparing the forest inventory
data with the mill volume, it overestimated
by 3.29%. In addition, it was observed that
the combination of both ALS and imagery
data  could  provide  more  information  re-
garding  the  occurrence  of  drought  and
canopy gaps in the forest.

Semi-ITD approach to estimate wood 
volume per tree

Overall,  using  the  ABA  method  151,048
trees were detected in the study area, with
an average of 994 trees ha-1, while the aver-
age number of trees per hectare estimated
by the forest inventory was 1708 trees ha-1.
Therefore, approximately 42% of the trees
were  not  detected  using  the  above  ap-
proach, reinforcing the need to correct the
remotely  sensed  tree  count  by  modeling
the tree count mean difference (MD).

After identifying the predictive mean dif-
ference model, we performed a linear ad-
justment using the least squares method.
The model  selected  used  three  variables:
maximum height (hmax);  the slope (S) esti-
mated from ALS data; and the number of
trees detected in the aerial  images found
using  the  semi-ITD  approach  (Tab.  3),
which had an RMSE of 12.66%.

The average number of trees per hectare
detected by the conversion of ITD into ABA
(semi-ITD)  for  the  study  area  after  mean
difference  (MD)  correction  was  1707.7,
while the inventory data provided a figure
of 1708.3 trees per hectare. Therefore, the
mean  volume  per  tree  estimated  from
study data was 0.188 m3,  while the mean
volume of an individual tree derived from
forest inventory was 0.195 m3. Fig. 3 shows
the  wall-to-wall  tree  volume maps  gener-
ated in this work.

Discussion
Accurate  stand  attribute  estimates  are

critical for effective forest plantation man-
agement,  partly  due  to  their  markedly
shorter  rotation  ages  and  faster  growth
rates  relative to natural  forests (Packalén

et al. 2011). Moreover, for proper manage-
ment of forest plantations, information on
individual  trees  is  of  high  value  (Simões
2008). Remote sensing has proven to be an
excellent  data  source  for  supporting  sus-
tainable forest management (Wulder et al.
2000).  However,  obtaining  accurate  esti-
mates of forest attributes is often still elu-
sive (Saarela et al.  2015).  Our results  indi-
cate  that  the  combination  of  different
remote  sensing  data  sources  to  estimate
stand volume can lead to improved accu-
racy of predictions (RMSE = 5.23%).

In this research, we used two approaches
to  estimate  stand  volume  in  Eucalyptus
spp. plantations using ALS as well as high
spatial resolution multispectral image data.
We first modeled the stand volume using
ABA  with  different  combinations  of  ALS-
and image-derived metrics as input data, in
three  different  models.  Despite  ABA

slightly  underestimated  stand  volume
(2.98%) compared to the reference volume
(total wood volumed measured at the mill)
the results were close to those obtained by
the  forest  inventory.  However  this  ap-
proach  could  be  enhanced  by  predicting
the  number  of  trees  using  the  ITD  ap-
proach, this introducing a correction meth-
od to improve tree count predictions. We
then  integrated  that  information  with
stand  volume  previously  predicted  using
the ABA method, allowing for the calcula-
tion of mean individual tree volume.

The model applied in the volumetric pre-
diction  used  two  variables  derived  from
aerial imagery, the near infrared band (B4)
and  the  green/red  (B2/B3)  ratio,  and  two
ALS-derived variables of height (hmode) and
cover (Amean). Using the ratio between the
green and red bands is analogous to using
the near infrared and red bands ratio. The
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Fig. 3 - Maps of ABA-derived predictions for stand volume (top left), corrected num-
ber of trees (top right) and mean tree volume (bottom).
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reflectance  in  the  near  infrared  band  is
linked  to  scattering  in  the  mesophyll,
which  occurs  due  to  the  interaction  of
solar radiation with the internal leaf struc-
ture  (Campbell  &  Wynne  2011).  Similarly,
green  wavelengths  are  reflected  by
mesophilic  leaf  tissues,  while  red  light  is
absorbed  by  chlorophyll  (Campbell  &
Wynne 2011). Therefore, the ratio between
these  bands  is  indicative  of  vegetative
vigor  and  vegetative  abundance.  Both
vigor  and  abundance  information  were
important  complements  to  the  ALS  met-
rics.

Despite the use of high-resolution image-
ry,  the second approach (which used the
aerial image variables) showed the poorest
performance among the three approaches
tested (RMSE = 8.45%).

Our results show that use of information
from a single  remote  sensing technology
can meet  the  predictive  needs  of  planta-
tion managers, so long as expectations of
accuracy and precision are attained accord-
ingly.  However,  our  results  also  highlight
that the integration of data from multiple
remote sensing technologies,  such as the
ALS  and  high-resolution  passive  imagery
data used here, can lead to more accurate
results than the use of a single technology.

This  improvement  in  accuracy  is  achiev-
able  even  in  situations  where  the  differ-
ence  in  time  between  data  acquisition
(2012) and field measurement (2013) is up
to  one  year,  as  is  the  case  in  this  study.
Because ALS data acquisition can be costly,
the field measurement-remote sensing hy-
brid approach can be of remarkable bene-
fit to forest managers.  The integration of
data from different sources with different
acquisition  dates  can  increase  the  useful
life of forest attribute data collected by any
means,  potentially  decreasing  the  fre-
quency of acquisition and therefore reduc-
ing costs.

While  ABA  provided  estimates  of  total
wood  volume  for  the  entire  study  area,
individual  tree delineation,  detected from
passive  image data,  allowed  us  to  down-
scale  the estimates  to the individual  tree
level. Images were used for tree detection
instead of ALS data because the trees were
planted at a relatively high density (3 × 2 m)
resulting in small canopy sizes. Their small
size  made  it  challenging  for  crowns  to
intercept  a  sufficient  number  of  LiDAR
points  for  crown  extent  to  be  accurately
defined.  Therefore,  the  performance  of
ALS was poorer when detecting individual
trees compared to image-based approach-
es.

Despite improvements over ALS data, we
still  found the accuracy of  single tree de-
tection  from  images  to  be  unsatisfactory
(58% correctly detected trees) and so a cor-
rection factor was introduced. This correc-
tion, based primarily on slope, allowed us
to  increase  the  accuracy  of  single  tree
detection and achieve unbiased individual
tree volume estimates. Slope proved to be
a key variable to include in the modeling of

tree detection error. With increasing slope
more trees were located in the same pro-
jected area,  leading to an aggregation of
the canopies and an increase in the maxi-
mum  tree  height  of  the  inventory  plots.
Increased maximum tree height, therefore,
showed a higher correlation with the stan-
dard  deviation  (i.e.,  heterogeneity)  of  a
plot, which made tree detection from the
images more difficult.

In general,  the correction procedure ap-
plied  to  our  tree  counting  process  per-
formed  well,  showing  good  agreement
with  existing  tree  count  estimates  and
leading  to  individual  tree  volumes  with
negligible mean difference and low RMSE
(12.66%).  Our  corrected  estimates  of  tree
count were greater than uncorrected val-
ues identified from the image-based detec-
tion by 713.7 trees per hectare, very close
to  extant  estimates  based  on  the  forest
inventory. The final estimates of individual
tree volume after mean difference correc-
tion were 0.188 m3 per tree, 3.5% less than
the inventory estimate (Simões 2008, Pack-
alén et al. 2011).

We demonstrated  that  a  traditional  ITD
approach can be modified by using ABA, in
spite of  losing the exact location of  each
tree,  but  enabling  to  obtain  the  desired
tree density information (Breindenbach &
Astrup 2014).

Conclusions
Accurate  information  about  wood  vol-

ume at both the stand and individual tree
levels is required to support the effective
management of forest plantations. In this
study  we  enhanced  the  traditional  area-
based  approach  using  individual  tree
detection.  The  integration  of  geometrical
and spectral information provided by ALS
and aerial imagery, respectively, allows for
the reliable predictions of volume at both
spatial  scales.  Moreover,  remote  sensing
data integration results in lower mean dif-
ference and RMSE. Our approach allowed
for the estimation of individual tree volume
with negligible bias.
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