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Sensitivity analysis of RapidEye spectral bands and derived vegetation 
indices for insect defoliation detection in pure Scots pine stands

Alexander Marx (1), 
Birgit Kleinschmit (2)

This study investigated the statistical relationship between defoliation in pine
forests infested by nun moths (Lymantria monacha) and the spectral bands of
the RapidEye sensor, including the derived normalized difference vegetation
index  (NDVI)  and  the  normalized  difference  red-edge  index  (NDRE).  The
strength of the relationship between the spectral variables and the ground ref-
erence samples of percent remaining foliage (PRF) was assessed over three
test years by the Spearman’s ρ correlation coefficient, revealing the following
ranking order (from high to low ρ): NDRE, NDVI, red, NIR, green, blue, and red-
edge. A special focus was directed at the vegetation indices. In both discrimi-
nant analyses and decision tree classification, the NDRE yielded higher classifi-
cation accuracy in the defoliation classes containing none to moderate levels
of defoliation, whereas the NDVI yielded higher classification accuracy in the
defoliation classes representing severe or complete defoliation. We concluded
that the NDRE and the NDVI respond very similarly to changes in the amount of
foliage, but exhibit particular strengths at different defoliation levels. Combin-
ing the NDRE and the NDVI in one discriminant function, the average gain of
overall accuracy amounted to 7.8 percentage points compared to the NDRE
only, and 7.4 percentage points compared to the NDVI only. Using both vegeta-
tion indices in a machine-learning-based decision tree classifier, the overall
accuracy further improved and reached 81% for the test year 2012, 71% for
2013, and 79% for the test year 2014.

Keywords: Forest Health, Discriminant Analysis, Pine Defoliation, Normalized
Difference Red-edge Index, Decision Tree Classification

Introduction
Insect defoliation is a frequent and recog-

nized problem in the world’s managed for-
ests,  particularly  in  industrial  plantations
and  homogeneously  structured  forests.
The FAO’s Global Forest Resources Assess-
ment 2010 (FAO 2010) reports the ten most
prevalent insect pests in Europe of which
two are bark beetle species and eight are
defoliators. According to the FAO’s Global
Forest  Resource  Assessment  main  report
(FAO 2000), 1,870,000 km² of the world’s
forests  are  plantations,  which  represent
about 5% of the estimated global total for-
est  area.  The  principle  genera  grown  in
plantations worldwide are  Pinus (20%) and
Eucalyptus (10%).  In  Germany,  Scots  pine

(Pinus sylvestris) occupies 24% of the total
forest area (German Forest Protection So-
ciety 2017).  Conifer plantations commonly
consist  of  one  species  and  are  therefore
particularly  prone  to  mass  outbreaks  of
pests like defoliating insects, since uniform
structure and species poorness do not pro-
vide as much ecological niches for natural
antagonists  as  mixed  and  structure  rich
forests (Majunke et al. 2004). The greater
the  number  of  plant  and  animal  species
that inhabit an ecosystem, the greater are
the barriers and balances that prevent any
one species  from  increasing  to  the  point
where  other  ecosystem  components  are
threatened (FAO 2001). Economic damages
result  from  necessary  additional  invest-

ments in phytosanitary measures – for in-
stance, insecticide applications or removal
of  dead  trees.  If  trees  survive,  slowed
growth of  wood from reduced photosyn-
thesis  activity  induces  indirect  economic
damage. Thus, the monitoring of affected
forest areas and the mapping and estima-
tion of  the defoliation extent  and magni-
tude is important for both forest managers
and forest ecologists (Radeloff et al. 1999).
In Germany, five pest species (orders Lepi-
doptera  and Hymenoptera) are common in
Scots pine plantations. They are often re-
ferred to as grand pine defoliators because
of their repetitive mass outbreaks (Majun-
ke et al. 2004)

Several  studies  considering  a  variety  of
sensors and methods have suggested the
capabilities of optical satellite remote sens-
ing for defoliation mapping (Radeloff et al.
1999,  Heikkilä et al. 2002,  Sims et al. 2007,
De Beurs & Townsend 2008, Chávez & Cle-
vers 2012,  Thayn 2013,  Adelabu et al. 2014,
Sangüesa-Barreda  et  al.  2014).  To  under-
stand how satellite remote sensing can be
used to detect  or  assess  defoliation,  it  is
important to review the interaction of light
and vegetation in general,  and the forest
canopy in specific. Leaves of healthy vege-
tation  absorb  light  for  photosynthesis  in
the  visible  region  of  the  electromagnetic
spectrum,  particularly  in  the  blue,  red-
orange,  red,  and a smaller amount in the
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red-edge  wavelengths.  Absorption  in  the
green part of the spectrum takes place but
is  rather  weak  (Rabinowitch  & Govindjee
1969). The NIR band interacts with healthy
leaf  structure and is  scattered by  the air-
cell  interfaces  of  the  spongy  mesophyll
(Jensen 2000). Sensitivity of the red-edge
portion  of  the  electromagnetic  spectrum
to  variations  in  leaf  chlorophyll  content
was  reported  first  by  Rabinowitch  &  Go-
vindjee  (1969) who pointed  out  the  exis-
tence of a chlorophyll  absorption peak at
695 nm. Evidence for this  hypothesis  was
for  instance  provided  by  Gitelson  et  al.
(2003).  As  the  needle  mass  is  reduced,
chlorophyll  absorption decreases,  causing
an  increase  of  reflectance  in  the  chloro-
phyll  absorption  bands.  Simultaneously,
biomass of healthy leaves is reduced lead-
ing to a decrease in the NIR reflectance.

Leaf Area Index (LAI) is strongly related
to  the  varying  amount  of  foliage  in  the
canopy (Rullan-Silva et al. 2013).  Barclay &
Goodman  (2000) and  Zeng  &  Moskal
(2009) report  five  different  measures  of
LAI.  Chen & Black (1992) specified the LAI
for  conifers  (non-flat  leaves)  as  half  the
total intercepting area per unit ground sur-
face area. If it is the aim to estimate the LAI
using optical satellite imagery, ground ref-
erence data needs to be collected and re-
lated to spectral variables (spectral bands
or vegetation indices) in order to build, for
example,  linear  or  non-linear  regression
models (Running et al. 1986,  Schiffman et
al. 2008,  Stenberg et al. 2008). The collec-
tion of LAI samples can occur directly (e.g.,
leaf collection) or with indirect non-contact

methods which rely on suitable devices like
the Licor  LAI-2000 Plant  Canopy Analyzer
or optical camera systems for hemispheri-
cal  photography.  Detailed  information
about devices and methods can be found
in  Jonckheere et al. (2004) and  Homolová
et al. (2007). Therefore, LAI sampling must
be considered a fairly time consuming and
costly procedure. Bréda (2003) pointed out
that remotely sensed vegetation indices at
present would need a site- and stand-spe-
cific calibration against ground-based mea-
surements of LAI and still do not yield suit-
able results for complex canopies such as
forests.  Therefore,  it  would  be  necessary
to  rely  first  on  qualitatively  sufficient
ground-based LAI estimates.

In contrast,  visual  estimation of  percent
remaining foliage (PRF) is rather inexpen-
sive and can efficiently be implemented. In
fact, visual assessment of tree defoliation
is  often applied in the practice for  forest
health assessment in Germany, unlike LAI.
In the ICP Forest  (International  Co-opera-
tive Programme on Assessment and Moni-
toring of Air  Pollution Effects on Forests)
crown  condition  assessment,  defoliation
taxation  is  implemented  by  using  foliage
transparency as a  proxy variable which is
visually estimated in 5% intervals (ICP For-
est 2016). This approach was developed by
Tallent-Halsell (1994).

The  number  of  studies  relating  optical
satellite remote sensing and insect defolia-
tion is comparably low and often based on
freely available imagery at medium to low
spatial  resolution.  Hall  et  al.  (1995) evalu-
ated the performance of  the Landsat  TM

sensor in detecting tree top kill caused by
the Jack pine budworm (Choristoneura pi-
nus pinus) in a three-year time series. They
found  poor  spectral  differences  in  the
bands of Thematic Mapper data related to
defoliation  intensities  in  the  studied
stands.  Correlations  between  NDVI  and
defoliation  were  not  as  high  as  in  other
existing studies, and this was attributed to
the  interfering  signals  from  the  ground
vegetation  of  the  relatively  open  forest
canopy.  Falkenström  &  Ekstrand  (2002)
correlated Norway spruce and Scots pine
defoliation  samples  with  the  IRS-LISS  III
sensor spectral bands, band ratios and veg-
etation indices. They reported the highest
correlations for the NIR band (r= -0.83), the
NIR/red-ratio (r=  -0.92),  and the  NDVI  (r=
-0.91) in almost pure pine stands. De Beurs
&  Townsend  (2008) tested  MODIS-based
composite NDVI, EVI (Enhanced Vegetation
Index), Normalized Difference Water index
(NDWI),  and  two  other  Short  Wave  In-
frared band (SWIR) based indices (NDIIb6
and  NDIIb7)  for  their  capacity  to  map
gypsy moth (Lymantria  dispar)  defoliation
as estimated by ground observations. They
concluded that defoliation estimates based
on NDIIb6 and NDIIb7 can be reliably used
to monitor insect defoliation annually at a
minimum mapping unit of 0.63 km². Using
Landsat TM data and applying spectral mix-
ture analysis  and determinant separation,
Radeloff et al. (1999) suggested the possi-
bility  of mapping defoliation by Jack pine
budworm with high accuracies.  Hall  et al.
(2003) correlated ground-based with satel-
lite-based (Landsat ETM+) relative LAI esti-
mates to map defoliation in aspen (Populus
ssp.) stands caused by the large aspen tor-
trix (Choristoneura conflictana). Their corre-
lation analysis resulted in a Pearson’s corre-
lation  coefficient  of  0.84.  High  and  very
high resolution imagery provide better spa-
tial  detail  for  defoliation  mapping,  how-
ever, there have not a lot of studies been
published  so  far,  probably  because  such
data is usually not freely available. Adelabu
et al. (2014) compared Support Vector Ma-
chine and Random Forest classifiers for the
segregation  of  three  defoliation  classes
with 5  m multi-spectral  RapidEye imagery
in  a  study  area  situated  in  the  Mopane
woodland  in  Botswana.  The  presence  of
the  RapidEye  red-edge  band  led  to  an
increase in classification accuracy of about
20 percent points using both of the above
methods.  Furthermore,  they  observed  a
better separation of the defoliation classes
by the NDRE than by the NDVI.  Chávez &
Clevers  (2012) used  multi-spectral  World-
View2 data (2 m spatial resolution) to eval-
uate  the  health  condition  of  savannah
trees  characterized  by  5  classes  of  green
canopy percentage (GC%). The comparison
of the NDRE and the NDVI indicated signifi-
cant correlations with GC% for both vegeta-
tion  indices,  with  a  higher  Spearman’s  ρ
coefficient of 0.91 for the NDVI. The Spear-
man’s ρ for the NDRE was 0.83.

The purpose of this study was to analyze
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Fig. 1 - Location of
RapidEye test tiles

located in the federal
state Brandenburg

(52° 07′ 53.0″ N 13° 12′
58.3″ E), Northeast

Germany, map scale:
1:5,000,000.
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the statistical relationship between defolia-
tion in Scots pine plantations and the five
RapidEye  bands,  as  well  as  the  derived
spectral indices NDVI and NDRE, by means
of  different  methods  of  analytical  statis-
tics.  Correlation  and  discriminant  analysis
(DA)  were  used  to  assess  the  statistical
trends  between  the  variables  over  three
consecutive  years  (2012,  2013,  and  2014).
Eventually,  a  machine-learning based DTC
(decision tree classifier) was applied and its
classification outcome related to the previ-
ously observed results. A special focus was
put  on  the  comparison of  the  NDRE and
the NDVI, since the NDVI is a traditionally
and  frequently  used  vegetation  index,
while the broad band NDRE is specific only
for a few optical satellite systems, namely
RapidEye,  Sentinel  2A,  WorldView-2,  and
WorldView-3. In this regard, a generic aim
of the analysis was to positively contribute
to the research presented in other existing
studies  investigating  and  comparing  the
NDVI and NDRE for vegetation monitoring,
in particular forest health monitoring. Con-
sidering the depth of the analysis and pine
plantation as the studied vegetation type,
no  such  study  specific  for  the  RapidEye
sensor can be found so far in the literature.

Materials and methods

Test sites
The test sites were situated in the south-

east of the federal state Brandenburg, Ger-
many (Fig. 1). The area is characterized by
flat  terrain  with  Scots  pine forest  planta-
tions  (Pinus  sylvestris)  growing mainly  on
poor sandy soils. The water holding capac-
ity of the soils is low. Canopies of the pine
forest  are  relatively  homogeneous  and
therefore, spectrally almost uniform. How-
ever, some variation is still present due to
differences in age, growth stages and ca-
nopy densities of different plantation com-
partments.  Plant  associations  within  the
pine plantations include:  Dryopteri-Cultopi-
netum sylvestris with dense fern ground ve-
getation,  Calamagrostio-Cultopinetum  syl-
vestris vegetated chiefly with reed grasses,
Calluno-Cultopinetum sylvestris with a mix-

ture of heather and mosses,  and  Molinio-
Myrtillo-Cultopinetum sylvestris where blue-
berry shrubs grow together with wood sor-
rel  and  moor  grasses  (Hofmann  1997).
Inter-mixed  tree  species  are  sessile  oak
(Quercus  petraea),  birch  (Betula  pendula),
and black locust (Robinia pseudoacacia). A
nun  moth  (Lymantria  monacha)  outbreak
occurred  between  2011  and  2014  is  cur-
rently in the retro-gradation phase. Symp-
toms  for  a  commencing  pine  tree  lappet
moth  (Dendrolimus  pini)  gradation  were
observed in 2014.

RapidEye imagery
In  this  study,  RapidEye  data  from  2012,

2013, and 2014 were used. Nun moth cater-
pillars cease feeding approximately in mid-
July and emerge as adult butterflies after a
few  days  of  pupation  (Majunke  et  al.
2004). Hence, defoliation can be most reli-
ably assessed only towards the end of July.
Tab.  1 provides  an  overview  of  the  data
acquisition parameters of the RapidEye im-

ages used in this study. Each RapidEye sa-
tellite is equipped with a Jena Spaceborne
(push broom) Scanner JSS 56. The dynamic
range  of  the  camera  allows  for  a  data
depth of  12  bits.  Light reflected from the
earth’s surface is recorded in five spectral
bands: blue (440-510 nm), green (520-590
nm), red (630-685 nm), red-edge (690-730
nm), and NIR (760-850 nm  – Planet 2017).
The  ground  sampling  distance  at  data
acquisition measures 6.5 m, the final pixel
size in the physical data RapidEye Level 3A
product, which is a 5000 × 5000 pixel tile,
equals 5 m.

Ground reference data
Ground  reference  samples  required  for

the  analysis  of  the  statistical  relationship
between defoliation and the spectral vari-
ables  were  collected  during  the  dates
shown  in  Tab.  1.  In  test  year  2012,  the
ground reference samples were dispersed
over three RapidEye tiles, in 2013 and 2014
samples were covered by one tile.  An ex-
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Tab. 1 - Acquisition parameters of the used RapidEye data and the ground reference data.

Test year (test) 2012 (1) 2012 (1) 2012 (1) 2013 (2) 2014 (3)
Tile ID 3362911 3363010 3363112 3363013 3363207
IRD (Image Recording Date and time) 2012-08-19

11:15:09 UTC
2012-08-20

11:17:59 UTC
2012-08-19

11:15:01 UTC
2013-08-06

11:03:47 UTC
2014-09-18

11:13:33 UTC
Satellite RE4 RE5 RE4 RE4 RE2
Cloud coverage (%) 0 0 0 0 0
Satellite view angle (°) -9.8 -9.3 -9.8 0.1 0.3
Satellite azimuth 103.8 106.1 104.0 282.7 282.7
Sun Azimuth 182.6 183.2 183.1 178.2 182.9
Sun Elevation 51.1 50.5 50.6 54.9 39.7
GSD (Ground Sampling Date) 2012-09-06 2012-09-05 2012-09-05 2013-09-26

2013-09-27
2014-10-13
2014-10-11

Difference image recording date and ground 
reference collection (days)

18 17 18 52 25

Number of ground reference samples 95 95 95 203 122

Fig. 2 - Example of GPS-measured sample plot centers (yellow crosses) over RapidEye
RGB (test year 2014), 52° 17′ 27.0″ N 12° 12′ 02.0″ E, map scale: 1:50,000.
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pert  of  the  state-forest  research  division
carried  out  the  foliage  taxation  of  the
Scots  pine  crowns  using  a  standardized
method of assessing PRF (percent remain-
ing foliation). In practice, PRF is preferred
above percent defoliation, because it indi-
cates the survivability of a given tree, and
because it is more intuitive. Sampling was
performed  on  transects  throughout  the
principal areas of infestation. Each sample

point  was  selected  in  accordance  with  a
relatively  homogeneous  condition  of  all
pine crowns in the canopy within an esti-
mated  radius  of  about  10  m.  The  center
coordinates  of  the  sample  points  were
recorded (Fig. 2) using a Magellan Mobile
Mapper  6  equipped  with  ESRI  ArcPad8
software.  PRF  was  visually  estimated  for
each tree in a plot in accordance with the
state forest practice guide, using 11 possi-

ble PRF levels: 0%, 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%, and 100%. For each plot
the average PRF value for all trees within
was  recorded.  From  the  PRF  levels,  the
memberships of the samples to the corre-
sponding  defoliation  classes  were  deter-
mined.  The  defoliation  classes  are  de-
scribed in Tab. 2. The objective of the sam-
pling  strategy  was  to  cover  the  entire
range of occurring defoliation levels and to
collect as many ground reference samples
as possible in the given time. Although two
reference photo books for defoliation esti-
mation  are  available  (Müller  &  Stierlin
1990,  Bauer  et  al.  2007),  crown  taxation
based on photos from books or photos in
general (Fig. 3A,  Fig. 3B) may only provide
guidance and orientation.  A more reliable
approach  is  illustrated in  Fig.  4.  It  shows
the method used to estimate the PRF-lev-
els per tree and provides a calculation ex-
ample. It is very helpful to divide the crown
into  sunlit  and  shaded  crown  and  highly
important to segment these parts regard-
ing  the  yearly  needle  shoots,  since  it  re-
duces the subjective error of visual impres-
sion.  The  attributes  PRF  and  defoliation
class were entered at the time of  coordi-
nate recording.

Image pre-processing and signature 
extraction

Pre-processing  of  the  images  included
noise reduction based on the PCI maximum
noise fraction linear transformation (Green
et al. 1988), and top of atmosphere correc-
tion (Chavez 1996).  For the corrected im-
ages  the  vegetation  indices  NDVI  [(NIR  -
red)  /  (NIR  +  red)]  and  NDRE [(NIR -  red-
edge) / (NIR + red-edge)] were calculated. A
squared  buffer  of  10  m  side  lengths  was
applied to the sample points. The ground
reference  data  were  visualized  with  the
images,  and  samples  too  close  to  forest
roads and trails were discarded. Using the
buffered  samples  image statistics  (means
of  the  five  RapidEye  bands,  NDRE,  and
NDVI) were extracted using the EASI func-
tion VIMAGE in PCI Geomatics. The mean-
function was used for signature extraction
in order to average the spectral variability
of  the  forest  canopy  within  the  sample
plots.  The attribute tables were exported
to spreadsheets, and then imported to IBM
SPSS for analysis.

Analysis of the relationship between 
the spectral variables and defoliation

The three test years were analyzed indi-
vidually  and  not  treated  as  one  sample
data set to avoid the introduction of addi-
tional error sources. Such error sources are
for  example  varying  time  differences  be-
tween image recording dates (IRD) and the
dates of ground reference samples collec-
tion (GRD), the varying site conditions, and
the different lighting conditions (sunny or
cloudy)  during  sample  collection.  More
details  about such sources  of  uncertainty
are reported in  Eickenscheid & Wellbrock
(2014) and Muukkonen et al. (2014).
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Fig. 3 - Example of Scots pine trees with an estimated PRF (percent remaining foliage)
value of: (a) 80%; and (b) 20% (photo: M. Wenk).

Fig. 4 - Method for the estimation of PRF levels for Scots pine (Eberswalde Forestry
State Center of Excellence, Dept. Forest Development and Monitoring, Germany).
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(PRF).

Defoliation 
class code Description

Estimated PRF levels
in defoliation class

c1 none to minor defoliation 90%, 100%
c2 light to moderate defoliation 80%, 70%, 60%, 50%
c3 severe defoliation 40%, 30%, 20%
c4 extreme to complete defoliation 10%, 0%
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The  correlation  analyses  considered  the
whole  range  of  PRF  (0%  to  100%).  The
Spearman’s  ρ correlation coefficients (Ma-
ritz  1981)  were  calculated  for  all  spectral
bands,  as  well  as  for  the  NDRE  and  the
NDVI, to assess the extent and direction of
the relationships between the entire range
of  estimated  PRF  levels  and  the  spectral
variables.

To determine the capacity of the vegeta-
tion  indices  to  distinguish  between  the
four  defoliation  classes  (Tab.  2),  discrimi-
nant analyses (DA) were carried out for the
three  test  years.  As  opposed  to  cluster
analysis,  which generates a grouping vari-
able  from  feature  variables,  the  DA  ex-
plores  the  dependency  of  a  nominally
scaled grouping variable – in this study, the
defoliation classes – to a metrically scaled
feature variable (spectral variable).  As DA
requires  normal  distribution  of  the  inde-
pendent variable values within the groups
of  the  dependent  variable  (defoliation
classes), and equal group variances (homo-
scedasticity  – Backhaus  et  al.  2003),  nor-
mality of data was assessed using Shapiro
Wilk’s tests, and equal variances using the
Levene’s tests, both with α=0.05.

For  the  DA,  the  Wilk’s  Lambda  value  is
calculated by dividing the unexplained dis-
persion by the explained dispersion. Thus,
the lower the Lambda value the higher the
accuracy  of  the  calculated  discriminant
function. The underlying H0 hypothesis ex-
presses that the means of all independent
variables  are  equal  across  the dependent
variable’s  groups.  The  significance  of  the
Wilk’s Lambda values are tested by  χ2 test
(α=0.05). Significant χ2 values indicate that
none of the independent variables is equal
across  groups  of  the  dependent  variable
(Backhaus et al. 2003). For accuracy assess-
ment,  the  leave-one-out  cross  validation
method (LOO-CV) was selected. From the
output results, classification confusion ma-
trices were obtained and the correspond-
ing  producer’s  (PA),  user’s  (UA),  overall
accuracies (OA), and KHAT-values were cal-
culated.  The KHAT value  ranges  between
minus  one  and  one  and  indicate  if  the
actual  agreement  of  the  classification  in
the error matrix is significantly better than
a random agreement (Congalton & Green
1957). As a rule of thumb, KHAT > 0.75 indi-
cates  strong  agreement,  0.5-0.75  repre-
sents  moderate  agreement,  and  KHAT  <
0.5 a weak agreement (Lein 2012). A nega-
tive KHAT value indicates that the classifi-
cation result is worse than a random classi-
fication.

The ground reference data, the NDRE and
the NDVI were used as input to a machine
learning-based  decision  tree  classifier
(DTC). For this purpose, CRT (classification
and regression trees, also known as CART
or C&RT) of the IBM SPSS module Decision
Trees was used. The underlying algorithm
was developed and described in detail  by
Breiman et al. (1984). When the dependent
variable is categorical, CRT uses a recursive
approach to generate a final classification

tree,  while  a  regression  tree  is  created
when  the  dependent  variable  is  continu-
ous.  DTCs  are  non-parametric  techniques
which do not require Gaussian distribution
or  homoscedasticity  of  the  independent
variables (Tufféry 2011). Therefore, individ-
ual classification trees could be generated
for  all  three  test  years.  CRT produces  bi-
nary  splits  at  each  node  of  the  decision
tree based on user-defined criteria and cre-
ates child nodes and eventually end nodes
(classes) in which the predictor variable is
as  homogenous  as  possible.  The splitting
criterion is  defined as  the deviation from
the homogeneity and expressed in a mea-
sure of impurity (IBM 2012). There are two
impurity functions widely used in practice
of which the GINI-Index is the most broadly
used  (Timofeev  2004).  The  GINI  impurity
index reaches its minimum (zero) when all
cases of an attribute fall into a single infor-
mation  class  (Tso  &  Mather  2009).  Thus,
the lower the GINI index is at a particular
node the higher is the homogeneity of this
node. Decision trees can become very com-
plex since the algorithm tries to find a solu-
tion yielding the highest accuracy for the
training data set.  This  will  often result  in
too many tree levels and splits and some-
times solutions for single cases. There are
several  parameters  which can be defined
to  create  a  more  simplified  and  robust
decision tree. The most important parame-
ter  for  controlling  the  trade-off  between
robustness, accuracy and simplicity of the
decision  tree  is  pruning.  Pruning  reduces
the  complexity  of  the  final  decision  tree
and may result in a better predictive accu-
racy (robustness) by reducing the effect of
overfitting and by removing sections that
may be based on noisy or erroneous data
(Patil et al. 2012). The intensity of pruning
needs to be specified by the risk value (in
the  presented  analyses  set  to  0.5)  which
defines  the maximum acceptable risk  dif-
ference  between  the  unpruned  and  the
pruned tree expressed in standard errors
and ranges from zero (lowest risk) to one
(highest risk  – IBM 2012). Other important
parameters  to  be  specified  are  the  maxi-
mum number of tree levels (set to 3), the
minimum  number  of  cases  for  parent
nodes (set to 10), and the minimum num-
ber  of  cases  for  child  nodes  (set  to  5).
Based on the set criteria, the decision tree
grows during the learning process until the

criteria  are  met.  Then  the  tree  is  pruned
back until the risk criterion is met. For the
quality  assessment  of  the  final  decision
trees,  a  10-fold  cross  validation  was  ap-
plied.

Results and discussion

Correlation analysis
The  results  of  the  correlation  analysis

(Tab. 3) showed that all spectral variables
are  sensitive  to variations  in  tree  foliage.
The bands of the visible spectrum (i.e., the
blue, green, red and red edge bands) were
negatively correlated with PRF, proving the
photosynthetic  absorption  characteristics
mentioned  above  (see  the  introduction).
Green and red-edge spectral  wavelengths
are absorbed by the chlorophyll  pigments
of  green leaves  with  low specific  absorp-
tion coefficients but simultaneously pene-
trate  the  leaves  a  little  better  than  the
main absorption bands blue and red. Thus,
we can observe low to moderate correla-
tions  between  the  green  and  red-edge
spectral wavelengths and PRF. In the case
of  the  blue  band  the  correlation  analysis
revealed  low  to  moderate  correlations
with PRF. In contrast, the red band is the
strongest correlating RapidEye band, even
stronger  than  the  NIR  band.  We  assume
that,  apart  from  the  chlorophyll  compo-
nent, the reddish-brown bark of Scots pine
might be another coinciding and probably
additive factor contributing to this effect.
We  also  observed  a  negative  correlation
between the red band and PRF. When nee-
dle matter is lost due to insect feeding, less
photosynthetically  active  needle  mass  is
available  (thus  red  increase)  and  at  the
same time the reddish bark becomes visi-
ble in the top view of the canopy (thereby
red  increase).  The  same observation  was
reported  for  Balsam  fir  by  Lecki  et  al.
(1988) who attributed the increased red re-
flectance – next to the decreased chloro-
phyll absorption – to the higher reflectance
of  both bare twigs  and feeding debris  as
compared to needles. 

Positive  correlations  were  observed  be-
tween  the  NIR  band  and  the  vegetation
indices.  While  the Spearman’s  correlation
coefficients  of  the  blue,  green,  and  red-
edge band largely varied between the test
years,  they were more stable for  the red
band and for the NIR band and most stable
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Tab.  3 -  Spearman’s  ρ correlation coefficients between spectral  variables and esti-
mated PRF-levels, ranking from 1 (highest overall correlation) to 7 (lowest overall cor-
relation).

PRF Test year N

Spearman’s ρ
(PRF vs. spectral variables)

blue green red red-
edge

NIR NDRE NDVI

0-100% Test 1 (2012) 95 -0.55 -0.56 -0.69 -0.43 0.70 0.88 0.85
0-100% Test 2 (2013) 203 -0.77 -0.69 -0.89 -0.73 0.83 0.90 0.90
0-100% Test 3 (2014) 122 -0.28 -0.46 -0.80 -0.37 0.75 0.85 0.86
rank - - 6 5 3 7 4 1 2
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for the vegetation indices. The correlations
between PRF and the NDRE and NDVI were
high, very similar, and approximately in the
range of the observations made by Chávez
& Clevers (2012). The Spearman’s  ρ of the
three test years yielded the following rank-
ing order (from highest to lowest  overall
correlation): NDRE, NDVI, red, NIR, green,
blue, and red-edge.

Discriminant analysis
In test years 2012 and 2014 the statistical

requirements  for  the  DA  (normality,  ho-
moscedasticity) were met, however, in the
test  year  2013  both  vegetation  indices
showed  significant  departures  from  nor-
mality  and  homoscedasticity.  Therefore,
the test year 2013 had to be excluded from
DA.

In the DA tests, all Wilk’s Lambda values
were  significant  with  an  error  probability
p<0.001,  as  indicated  by  the  Chi  square
test,  i.e.,  the class means were not equal
and  the  classes  could  therefore  be  sepa-
rated.  Detailed results of  the discriminant
analysis  carried  out  including  error  matri-

ces are shown in Tab. 4. The overall classifi-
cation accuracy was moderate in test year
2012  (NDRE=70.5%,  NDVI=70.5%)  and  rela-
tively  low in  test  year  2014  (NDRE=57.4%,
NDVI=58.2%). Overall,  considering the OAs
and KHAT values, both vegetation indices
perform  nearly  equally,  as  already  ob-
served  in  the  correlation  analysis.  How-
ever, the detailed comparison of the defoli-
ation classes UA’s and PA’s reveals the dif-
ferences  between the  two vegetation  in-
dices. In defoliation class c2 and c4 the two
vegetation  indices  perform  similarly  (see
class coding in  Tab. 2). In defoliation class
c1  the NDRE performs visibly  better  than
the NDVI by yielding on average a PA 12.4
percentage points higher and a UA 8.8 per-
centage points higher (see Tab. 5), i.e., the
NDRE can better distinguish none to minor
defoliation  from  moderate  defoliation.  In
defoliation class c3 the NDVI exceeds the
NDRE by 14.4 percentage points (PA) and
7.3 percentage points (UA). This suggests
that the NDVI is more suitable to delineate
severe defoliation from moderate defolia-
tion.

These  results  showed  that,  overall,  nei-
ther  of  the  two  indices  outperforms  the
other,  exhibiting  rather  different  perfor-
mances in different defoliation classes. As
a  next  step,  the  NDVI  and  NDRE  were
entered together (in combination) into the
DA. The detailed results of this analysis are
shown in Tab. 4. In classes c1, c2, and c3 the
combination of  the NDRE and NDVI fairly
increased the classification accuracy, while
the results of defoliation class c4 remained
about the same. On average, the combina-
tion of the NDRE and NDVI in the test years
2012 and 2014 also increased the OA by 7.8
percentage points compared to the NDRE
and 7.4 percentage points compared to the
NDVI (Tab. 5).

Decision tree based classification
Tab.  6 summarizes  the  classification  re-

sults  achieved  with  the  DTC.  In  all  three
models (compare  Fig.  5a,  Fig.  5b,  Fig.  5c)
the NDVI is selected for the first binary split
producing the nodes one and two. The sec-
ond  binary  split  is  also  the  same  in  the
three models: node 1 used the NDVI to split
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Tab. 4 - Summary of the results of the discriminant analyses (DA) including error matrices. Combi refers to the combination of the
NDVI and the NDRE in the DA. (χ2): Chi-square; (df): degrees of freedom; (PA): producer’s accuracy (%); (UA): user’s accuracy (%);
(OA) overall accuracy (%).

Test year 2012 Test year 2014

Variable / Stats class
Predicted

Σ PA Variable / Stats class
Predicted

Σ PA
c1 c2 c3 c4 c1 c2 c3 c4

NDRE 

(OA=70.5 KHAT=0.59;
Wilk’s λ=0.274; χ2=118.4; 
df=3; p-value = 0.000)

Re
fe

re
nc

e c1 20 6 0 0 26 76.9
NDRE
 
(OA=57.4; KHAT=0.4;
Wilk’s λ=0.305; χ2=140.7; 
df=3; p-value = 0.000)

Re
fe

re
nc

e c1 11 4 0 0 15 73.3
c2 5 25 4 0 34 73.5 c2 16 24 12 0 52 46.2
c3 1 6 15 5 27 55.6 c3 0 8 20 8 36 55.6
c4 0 0 1 7 8 87.5 c4 0 0 4 15 19 78.9

- Σ 26 37 20 12 95 - - Σ 27 36 36 23 122 -
- UA 76.9 67.6 75.0 58.3 - - - UA 40.7 66.7 55.6 65.2 - -

NDVI 
 
(OA=70.5; KHAT=0.59;
Wilk’s λ=0.277; χ2=117.5; 
df=3; p-value = 0.000)

Re
fe

re
nc

e c1 17 9 0 0 26 65.4
NDVI

(OA=58.2; KHAT=0.43;
Wilk’s λ=0.266; χ2=156.8; 
df=3; p-value = 0.000);

Re
fe

re
nc

e c1 9 5 1 0 15 60.0
c2 7 24 3 0 34 70.6 c2 19 23 9 0 52 44.2
c3 1 2 19 5 27 70.4 c3 0 6 25 5 36 69.4
c4 0 0 1 7 8 87.5 c4 0 0 5 14 19 73.7

- Σ 25 35 23 12 95 - - Σ 28 34 40 19 122 -
- UA 68.0 68.6 82.6 58.3 - - - UA 32.1 67.6 62.5 73.7 - -

Combi (NDRE+NDVI)
 
(OA=77.9; KHAT=0.69;
Wilk’s λ=0.237; χ2=130.9; 
df=3; p-value = 0.000)

Re
fe

re
nc

e c1 22 4 0 0 26 84.6
Combi (NDRE+NDVI)

(OA=65.6; KHAT=0.52;
Wilk’s λ=0.231; χ2=173.4; 
df=3; p-value = 0.000)

Re
fe

re
nc

e c1 11 3 1 0 15 73.3
c2 5 26 3 0 34 76.5 c2 12 28 12 0 52 53.8
c3 1 2 19 5 27 70.4 c3 0 6 26 4 36 72.2
c4 0 0 1 7 8 87.5 c4 0 0 4 15 19 -

- Σ 28 32 23 12 95 - - Σ 23 37 43 19 122 -
- UA 78.6 81.3 82.6 58.3 - - - UA 47.8 75.7 60.5 78.9 - -

Tab. 5 - Average (test years 2012 and 2014) accuracy gains and losses in percentage points. Combi refers to the combination of the
NDRE and NDVI in DA (discriminant analysis) and DTC (decision tree based classification). (Combi – NDRE/NDVI): accuracy gains (+)
or losses (-) of the Combi over either vegetation index.

NDRE vs. NDVI (DA) NDRE or NDVI vs. Combi (DA) DTC_Combi vs. DA_Combi

PA gain UA gain OA gain PA gain UA gain OA gain PA gain UA gain OA gain

NDRE -
NDVI

NDRE -
NDVI

NDRE -
NDVI

Combi -
NDRE

Combi -
NDVI

Combi -
NDRE

Combi -
NDVI

Combi -
NDRE

Combi -
NDVI

DTC-DA DTC-DA DTC-DA

12.4 8.8 -0.4 3.8 16.3 4.4 13.1 7.8 7.4 -0.5 13.6 8.2
2.4 -1.0 - 5.3 7.7 11.3 10.4 - - 20.3 1.3 -

-14.4 -7.3 - 15.7 1.4 6.3 -1.0 - - -0.9 13.9 -
2.6 -4.2 - 0.0 2.6 6.9 2.6 - - 5.3 1.8 -
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into the two end nodes representing the
defoliation  classes  c3  (node  3)  and  c4
(node 4), while node 2 used the NDRE to
split it into the end nodes describing class
c1 (node 5) and c2 (node 6). The use of the
spectral  indices  by  the  classification  tree
displayed very similar pattern as observed
in the correlation analysis and the DA,  i.e.,
the NDRE better contributed to the detec-
tion  of  low  defoliation  levels  (none  to
minor and moderate defoliation), whereas
the NDVI better contributed to the detec-
tion of high defoliation levels (severe and
extreme to complete defoliation).  The re-
sulting classification accuracies of the DTC
are higher than those obtained by the DA
using the NDRE and NDVI combination. For
the test year 2012, the OA slightly increased
from 77.9% to 81.1% (see Tab. 4 and Tab. 6),
while we observed a strong OA enhance-
ment of 13.1 percentage points for the test
year  2014,  mostly due to both user’s  and
the  producer’s  accuracy  increases  in  the
defoliation  classes  c1  and  c2. Such  incre-
ment in accuracy might be explained by a
more skewed distribution of  class data in
the  test  year  2014  (as  reflected  by  the
lower  p-values  obtained  in  the  normality
test), which could lead to a bias in the DA
results.  In  contrast,  the  non-parametric
DTC  could  handle  this  data  much  better
than the DA by creating a  favorable tree
structure. The comparisons of the average
accuracy  gains  are  shown  in  Tab.  5.  The
predictive power of the classification tree
for  test  year  2013  was  only  moderate
(OA=71%, KHAT=0.61).

Discussion of the trends observed in the
classification results

Both  the  DA  and  the  DTC  classification
showed  similar  classification  pattern:  the
NDRE was more efficient in the detection
of classes with none or moderate defolia-
tion levels, whereas the NDVI works better
for the classes representing severe or com-

plete  defoliation.  Indeed,  PRF  is  strongly
correlated with  both needle biomass  and
chlorophyll  content,  and  it  may  be  as-
sumed that the NDRE responds better at
high  foliation  levels  because  it  does  not
saturate as quickly as the NDVI when the
overall  chlorophyll  content  of  the  forest
canopy is high. This was observed by  Eitel
et al. (2010), who tested in nursery of Scots
pine seedlings the hypothesis that the ad-
ditional availability of red-edge reflectance
information would improve the detection
of  plant  stress  induced  chlorophyll.  The
authors found that after removing the low
chlorophyll  values  from  the  sample  the
spectral index chlorophyll relationship still
amounted to r²=0.54 for the NDRE while it
dropped to r²=0.34 for the NDVI.

Steele  et  al.  (2008) made  very  similar
observations with grape leaves in a labora-
tory study based on chlorophyll (SPAD-502

device)  and  reflectance  measurements
(USB2000  radiometer).  They  suggested
that the NDVI had a non-linear asymptotic
relationship  with  chlorophyll  and  that  its
sensitivity  decreased  quickly  when  the
chlorophyll content increased. In contrast,
the NDRE showed a linear relationship, de-
creasing  only  slightly  at  high  chlorophyll
levels.  Simultaneously,  the  slope  of  the
NDVI fitting line became very steep at low
chlorophyll levels – far steeper than the fit-
ting line of the NDRE. This could explain a
better response of the NDVI at low defolia-
tion levels.  Similar findings were reported
by  Viña et al.  (2011) who investigated the
red-edge chlorophyll index [Chlred-edge= (NIR/
red-edge)-1]  for  its  statistical  relationship
with green LAI in maize and soybean fields.
Ritchie & Bednarz (2005) investigated the
relationship between the NDVI710nm  (a red-
edge based NDVI) and LAI estimates in cot-
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Tab. 6 - Results and error matrices of the decision tree-based classifications (DTC) for
the test years 2012, 2013, and 2014 using NDRE and NDVI as predictors (Combi). (PA):
producer’s accuracy (%); (UA): user’s accuracy (%); (OA) overall accuracy (%).

DTC_
Combi OA KHAT

Predicted

class c1 c2 c3 c4 Σ PA
Test 1
(2012)

81.1 0.73 c1 20 6 0 0 26 76.9
c2 3 30 1 0 34 88.2
c3 0 3 20 4 27 74.1
c4 0 0 1 7 8 87.5
Σ 23 39 22 11 95 -
UA 87 76.9 90.9 63.6 - -

Test 2
(2013)

70.9 0.61 c1 40 1 0 0 41 97.6
c2 32 41 0 0 73 56.2
c3 0 6 48 11 65 73.8
c4 0 1 8 15 24 62.5
Σ 72 49 56 26 203 -
UA 55.6 83.7 85.7 57.7 - -

Test 3
(2014)

78.7 0.7 c1 12 3 0 0 15 80.0
c2 5 43 4 0 52 82.7
c3 1 6 24 5 36 66.7
c4 0 0 2 17 19 89.5
Σ 18 52 30 22 122 -
UA 66.7 82.7 80.0 77.3 - -

Fig. 5 - Final tree model for the PRF classification into four defoliation classes generated with CRT for (a) test year 2012, (b) test year
2013, and (c) test year 2014. Input variables: NDRE and NDVI.
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ton fields. The r² values calculated from this
relationship at LAI < 0.5 equaled 0.87 and
at LAI > 0.5 r² equaled 0.5. Obviously, in this
study  the  observed  differences  between
NDVI  and  NDRE could  be  due  to  specific
changes in the chlorophyll  content of the
Scots  pine  canopy.  To  which  extent  leaf
structure and chlorophyll  content contrib-
ute  to  the  specific  NDVI  and  NDRE  re-
sponses will be subject of further research.

Sources of uncertainty
In this study, errors in the classifications

obtained are probably due to the large lag
time  (Δt)  between  the  image  recording
date (IRD)  and the date  of  ground refer-
ence data collection (GRD). In fact, plotting
the  KHAT  values  of  the  classifications  vs.
Δt(IRD-GRD),  a  tight  linear  relationship  was
observed with decreasing KHAT values as
the  Δt increases (Fig. 6). In test year 2013
Δt(IRD-GRD) was the largest and amounts to 52
days (Tab. 1). In this year, the overall accu-
racy achieved with the DTC is the lowest.
One of the consequences of the lag time is
the increase in leaf area after the nun moth
caterpillar  activity  has  stopped.  Pinus  syl-
vestris is  capable  of  growing new shoots
and needles after severe defoliator attacks
to compensate for the loss of foliage. This
phenomenon  has  frequently  been  re-
ported by foresters and we observed this
also in  the RapidEye imagery  time series.
Roloff  (2001) describes that in Scots pine
the apical meristem at the base of the nee-
dle  pairs  is  dormant  under  normal  condi-
tions; however, it is activated after defolia-
tor  damage  or  browsing  damage.  Within
four weeks (A. Roloff, Technical University
Dresden,  Germany,  pers.  comm.)  it  will
then start growing a new shoot with nee-
dles. The full  regeneration process occurs
at a scale of up to five years (depending on
the damage where it  begins) and its  suc-
cess  depends  on  site  conditions,  climatic

and  biotic  factors  (Wenk  &  Apel  2007,
Wenk & Möller 2013).

Phenological  changes  of  the  understory
vegetation are a further factor influencing
the reflectance of  the canopy.  Moreover,
another  source  of  uncertainty  was  likely
due to  the  sampling  strategy  adopted  in
this  study,  which  could  be  biased  as  the
samples were not selected at random. Fi-
nally, a varying degree of information in a
pixel  other  than  the  defoliation  may  be
attributed to the natural variability of the
forest canopy (mixed pixels).

In insect defoliation studies, it has gener-
ally been asserted that a meaningful classi-
fication  depth  is  limited  to  three  defolia-
tion classes yielding moderate overall accu-
racies between 70% and 80%, and that low
defoliation levels remain difficult to detect
(Radeloff et al. 1999). Taking the different
sources  of  uncertainty  into  account,  the
results of our analysis confirmed this state-
ment.  However,  we  demonstrated  that
also low defoliation levels can be detected
with  moderate  accuracy  in  Scots  pine
stands.

Conclusions and outlook
Based  on  the  results  of  this  study  and

previous literature evidence, we conclude
that  RapidEye is  a suitable satellite-image
data source for  defoliation detection and
mapping,  as  well  as  for  general  forest
health  mapping  activities.  The  vegetation
indices NDRE and NDVI are both well corre-
lated  with  different  levels  of  in  situ esti-
mated PRF. When the possibly early detec-
tion of defoliation is the objective, then the
use of NDRE is the better option. Because
of  the  sensitivity  of  NDRE  to  changes  in
chlorophyll  content,   it  may also be used
for  other  forest  health  problems  associ-
ated with the symptomatic discoloration of
needles,  such  as  Armillaria root  rot,  epi-
demic infestations by bark or wood breed-

ing  insects  (e.g.,  bark  beetles  and  wood
wasps),  or  in  cases  of  anthropogenic  ef-
fects such as massive sulfur dioxide emis-
sions. If  the objective is the precise delin-
eation of severely or completely defoliated
areas  or  other  severe damages,  then the
use of NDVI has to be preferred. Using only
one vegetation index can simplify process-
ing  procedures.  When the  objective  is  to
produce  maps  with  a  maximum  overall
accuracy  in  all  defoliation  or  otherwise
defined damage classes, then a supervised
method  using  both  vegetation  indices
seems to be a meaningful  approach,  pro-
vided that a sufficient amount of ground-
reference data of appropriate quantity and
quality are available. Then, both the NDRE
and NDVI  can be combined and used for
instance in a decision tree classifier such as
CART, Ross Quinlan’s C5, or a Random For-
est classifier.

Future research should  be addressed to
better  understand the defoliation and re-
foliation  processes  from  the  early  symp-
toms until the full regeneration or death of
affected pine stands by analyzing RapidEye
time series of known defoliation hotspots.
In this context, a variety of influencing fac-
tors (e.g., climatic variables, stand and site
parameters  such  as  age,  density,  type  of
understory vegetation, soil type, and forest
management practices) could be included
in  the  analysis,  with  the  aim  of  better
understanding  the  defoliator  gradation
cycles,  revealing  patterns  of  geo-spatial
spreading  of  insect  populations  or  even
developing appropriate prediction models.
Furthermore,  the  inclusion  of  defoliator
infested stands with and without pesticide
treatment would also be of great interest,
as  it  could  bolster  ecologically  and  eco-
nomically  more  sustainable  forest  health
management. 
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