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Introduction
The Brazilian Atlantic biome is recognized

as one of the hotspots for the conservation of
biodiversity (Forzza et al. 2012), though it is
severely affected by diverse human interfe-
rences, particularly in the State of São Paulo,
southeastern Brazil (Domingos et al. 2003).
The semideciduous Atlantic Forest is highly
fragmented in central-eastern São Paulo be-
cause of the expansion of agriculture and ur-
ban  and  industrial  growth  (Nalon  et  al.
2008). Besides the reduction of forest cover,
human activities bring about a variety of pol-
lutants from combustion of fuels, waste dis-
posal, long-term sewage sludge and fertilizer
application and other sources, which may be
toxic to the plant community and modify the

chemical  status  of  soil,  depending  on  its
original  chemical  and  physical  conditions
(Nriagu 1990,  Sharpley 1995,  Schaaf et  al.
2004, Pouyat et al. 2008, Lucas et al. 2011).
Soil  nutrients  are  among  the  main  factors
that  regulate  plant  growth  and  play an im-
portant  role in the sustainable  use of soils;
however, their excess due to pollution from
human sources may damage the soils and af-
fect the soil-plant relationships. Air pollution
may also disrupt other nutrient cycling pro-
cesses in natural ecosystems, such as the de-
composition of litter (Cotrufo et al. 1995).

Most anthropogenic pollutants deposited in
forest ecosystems accumulate in the soil sur-
face layers (Ruan et al. 2008), where pollu-
tants are typically immobilized for long pe-

riods (Hawkins et al. 1995, Verstraeten et al.
2012).  However,  these  accumulations  are
considered a “chemical time bomb” (Kabala
& Szerszen 2002, Hovmand et al. 2008), be-
cause pollutants  will  eventually be leached
into waterways (Miller & Friedland 1994).

Increased deposition of sulfur and nitrogen
compounds (SO2,  NOx and NH3)  in natural
communities induces soil acidification (Fal-
kengren-Grerup & Tyler 1993,  Akselsson et
al. 2013, Gao et al. 2013). Soil acidification
depletes the basic nutrient cations, causes a
decrease of pH, lowers the quality of humus,
and  accelerates  the  mobilization  of  alumi-
num (Boruvka  et  al.  2005,  Miller  & Wat-
mough 2009). The depletion of basic cations
from the forest floor alters the mineral nutri-
tion of trees,  modifies tree growth patterns
(Klumpp et al.  2002,  Högberg et  al.  2006,
Sebesta et al. 2011) and affects the distribu-
tion  of  roots  (Joslin  & Wolfe  1992).  As a
consequence,  biodiversity,  vegetation  pro-
ductivity  and  dynamics  of  the  soil  carbon
pool are affected (Binkley et al. 2000). 

Altogether, such negative effects contribute
to the forest decline observed in the Atlantic
Rain  Forest  on  the  coastal  mountain  range
named  Serra  do  Mar (region  of  Cubatão,
São Paulo State, Brazil). This forest is affec-
ted by air pollution from an industrial com-
plex that caused destabilization of the land
surface,  disturbance  of  soil  processes  and
landslides (Leitão Filho et al. 1993, Mayer et
al.  2000a,  2000b).  Furthermore,  the  large
metropolitan regions of the São Paulo State
(SE Brazil)  are  responsible  for  the  intense
fragmentation of the semideciduous Atlantic
Forest. This is observed in the Metropolitan
Campinas Region (MCR) located in the cen-
tral  eastern  region  of  the  State  (Fig.  1),
which is composed of 19 municipalities with
different types of land use (industrial,  agri-
cultural and urban areas). In addition to fo-
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affected by atmospheric deposition in 
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The expansion of agricultural, urban and industrial areas in the São Paulo State
(SE Brazil) led to the fragmentation of the original semideciduous Atlantic Fo-
rest into small, patchy forest remnants. Anthropogenic activities produce a va-
riety of pollutants affecting many ecological processes in these remaining fo-
rest fragments through soil acidification and fertilization. In this study, we in-
vestigated the soil chemical and physical status of six forest remnants (Paulí-
nia, Holambra, Americana, Jaguariúna, Campinas and Cosmópolis) differently
affected by industrial, rural and urban pollution in central-eastern São Paulo in
order to determine the soil potential to buffer the inputs of pollutants. Soil
samples from 0-10, 10-20 and 20-40 cm depths were collected in the dry and
the wet season and the following variables were analyzed: soil texture, pH in
CaCl2  solution, exchangeable cations and exchange capacity, organic carbon,
total  nitrogen,  extractable  sulfur,  phosphorus  and  heavy  metals.  Distinct
buffering capacities were observed in industrial and in rural and urban areas,
primarily due to the natural characteristics of the soils, such as soil texture,
acidification and organic matter. The forest soils affected by atmospheric de-
position  from  the  industrial  complex  (Paulínia  and  Americana)  were  more
sandy and acidic (pH = 3.6) than those near rural and urban sources (pH = 4.5).
The optimal chemical conditions (high contents of organic matter, exchange-
able bases, nitrogen, phosphorus and sulfur) were found in the clay soils of fo-
rest remnants located in Campinas and Jaguariúna, which were more affected
by rural or urban pollution than by industrial emissions. Such clay soils provide
the highest buffering capacity against environmental impacts in the study re-
gion.

Keywords: Tropical Soils, Atlantic Forest, Urban, Rural and Industrial Pollution,
Soil Acidification, Buffering Capacity
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rest fragmentation, the expansion of agricul-
tural, urban and industrial areas in the MCR
has  led  to  increased  pollutant  emissions,
such  as  sulfur  and  nitrogen  dioxides  (CE-
TESB 2012) that acidify the rain (Tresmondi
et al.  2005). Unless the natural characteris-
tics of the forest fragments increase the resi-
lience  against  pollution  impacts,  the  atmo-
spheric contamination and acid rain may en-
danger the local soil and may affect many of
the ecological processes in these remaining
forest patches. 

Because the soil is usually the most impor-
tant buffer of forest ecosystems against such
impacts, we analyzed the soils of the leftover
forest fragments to determine their potential
to  buffer  the  pollutant  inputs.  We investi-
gated the soil chemical and physical status in
six forest remnants differently affected by in-
dustrial, rural and urban pollution in munici-

palities in central-eastern São Paulo. We as-
sumed that wet and dry deposition of air pol-
lutants in the MCR changed the soil chemi-
cal status in the semideciduous Atlantic Fo-
rest  remnants,  particularly  those  located
downwind  from  the  industrial  area.  Addi-
tionally,  we  assumed  that  soils  with  high
buffering  potential  against  atmospheric  de-
position in the MCR had the optimal chemi-
cal conditions. This study is the first of a se-
ries of ecological surveys aimed at assessing
the impact of the complex mixture of air pol-
lutants on semideciduous Atlantic Forests in
the MCR, and planning the conservation of
their high biodiversity.

Material and Methods

Study area
Oxisol soils and gentle sloping topography

characterize the Metropolitan Campinas Re-
gion  (MCR -  Ker  1997,  Prado  1997).  The
predominant  climate in  the MCR is classi-
fied  as  B1rB’4a  according  to  the  Thornth-
waite’s  typology,  or  Aw (tropical  with  dry
winter)  according  to  Koeppen’s  classifica-
tion (Rolim et al. 2007). The MCR is charac-
terized  by a  hot  and rainy season  between
October  and  March  and  a  dry season  bet-
ween April and September. The average tem-
perature  ranges  from 23.2  to  24.9  °C,  and
the rainfall is 1142 mm in the rainy season,
while uuring the dry season the average tem-
perature  ranges  from 18.5  to  23.0  °C,  and
the  rainfall  is  283  mm.  The  predominant
wind  direction  is  southeast  (see  the  wind
rose included in Fig. 1).

The  MCR  is  the  second  most  important
economic center of the São Paulo State and
is located 100 km from the São Paulo metro-
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Fig. 1 - Locations of semideciduous 
Atlantic Forest remnants in the Me-
tropolitan Campinas Region (MCR), 
Brazil. (PA): Paulínia; (HO): Holam-
bra; (AM): Americana; (JA): Jagua-
riúna; (CA): Campinas; (CO): Cos-
mópolis. The wind rose in the upper 
right corner summarizes the annual 
wind velocities (shown by distinct 
colors in m s-1), frequencies (%) and 
directions (distributed in the different
azimuth degrees).
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politan region.  The largest Brazilian oil  re-
finery is  located in  Paulínia,  which  refines
20% of the crude oil in Brazil. Moreover, the
industrial  complex includes chemical, phar-
maceutical  and  fertilizer  industries  (Tres-
mondi  &  Tomaz  2004).  The  high  vehicle
traffic associated with industrial  and exten-
sive  agriculture  activities  remarkably  con-
tributes to increase the atmospheric pollution
of the region (Miranda & Tomaz 2008).

Six  semideciduous  forest  remnants  were
selected  at  different  distances  from the  in-
dustrial areas of Paulínía, Holambra, Ameri-
cana, Jaguariúna, Campinas and Cosmópolis
municipalities  (Fig.  1,  Tab.  1).  The largest
forest remnant was located in Campinas (235
ha), followed by those in Paulínia (180 ha)
and Cosmópolis  (120 ha).  Tree density va-
ried from 400 ind ha-1 in Jaguariúna to 706
ind  ha-1  in  Cosmópolis,  and  the  basal  area
ranged from 17.2 m2 ha-1 in Paulínia to 29.7
m2 ha-1 in Holambra. The soils were formed
from different  parent  materials,  from sand-
stone  to  diabase,  which  resulted  in  oxisols
with medium (red-yellow oxisol) to high fer-
tility (red oxisol).  All  forest  remnants  con-
tained  considerable  litter  stocks  (8.1-11.8
Mg ha-1), as typically observed in other tro-
pical forests (Ostertag et al. 2008, Tang et al.
2010). The predominant land use around the
forest  remnants  is  agriculture  in  Holambra
and Americana,  industry and agriculture  in
Paulínia, while a mix of urban and agricul-
tural areas is found in Campinas and Jagua-
riúna (Tab. 1).

Soil sampling and analyses
Soil  sampling  procedures  were  based  on

protocols  for  monitoring  European  forests
(Cools & Des Vos 2011, Ferretti et al. 2010,
Filizola et al. 2006), modified according to
the  forest  physiognomy and  environmental
conditions found in the tropics. Two plots of
140  × 50 m were established at  each sam-

pling site (forest remnant) 100 m apart from
the forest edge, totalling 14 000 m2 at each
site. Twenty-four soil samples were collected
in  each  plot  at  0-10,  10-20  and  20-40  cm
depths in July 2010 (dry season) and January
2011 (wet season). Three composite samples
per plot, layer and season (n = 12) were ana-
lyzed  for  each  forest  remnant,  which  were
obtained  by randomly mixing  eight  indivi-
dual soil samples.

Samples were air-dried, sieved through a 2
mm sieve and analyzed for texture, soil nu-
trients and heavy metals, according to  EM-
BRAPA (1997). Soil texture (granulometry)
was  determined  with  the  Boyoucos  hydro-
meter method. The soil pH was measured in
0.01 mol L-1 CaCl2  solution (soil/CaCl2 ratio
1:2.5). Available phosphorus (P) and the ex-
changeable potassium (K), calcium (Ca) and
magnesium (Mg) from soils were simultane-
ously extracted using a ion-exchange resins,
following the method proposed by Raij et al.
(1986).  The  extraction  procedure  included
the disaggregation of soil by shaking in wa-
ter, the transfer of elements from the soil to a
sodium bicarbonate treated mixture of anion
and cation exchange resins, and the separa-
tion of the resin from the soil by sieving and
extraction of elements from the resin. Phos-
phorus  was  determined  spectrophotometri-
cally with the molybdenum blue complex, K
by the flame emission spectrometry, and Ca
and  Mg  with  the  atomic  absorption  spec-
trometry. Al was extracted with a KCl solu-
tion (1 mol L-1) and determined by titration
with 0.025 mol L-1  NaOH. The organic car-
bon (Corg) was determined by colorimetry,
after  organic  matter  oxidation  with
Na2Cr2O7 2H2O  and  H2SO4.  Total  nitrogen
(Ntot) was determined by the Kjeldahl distil-
lation  method,  after  H2SO4 digestion.  Ex-
tractable  sulfur  (S)  was  determined  by the
turbidimetric  method  in  soil  extracts  pre-
pared  with Ca(HPO4)2. Extractable  heavy

metals (Cu, Fe, Mn and Zn) in soil extracts
prepared with DTPA-TEA were determined
with  atomic  absorption  spectrometry.  The
cation  exchange capacity (CEC = Ca+Mg+
K+Al+H), aluminum saturation (m% = [Al/
Ca+Mg+K+Al]·100), base saturation (V% =
[(Ca+Mg+K)/CEC]·100) and C/N ratio were
calculated.

Statistical analyses
Differences in  physical  and  chemical  soil

properties among forest remnants (sampling
sites)  were tested by non-parametric ANO-
VA (Kruskal-Wallis test -  α = 0.05), follo-
wed  by multiple-comparison  tests  (Dunn’s
method).  Pairwise  Spearman’s  correlation
coefficients among soil  characteristics were
also calculated for  testing variable  associa-
tions. All the above statistical analyses were
performed  using  the  software  package
SIGMAPLOT

® ver.  11.0  (Systat  Software Inc.,
San José, CA, USA).

Principal component analyses (PCA) using
the  software  package  PC-ORD® 6.0  (MjM
Software  Design,  Gleneden  Beach,  OR,
USA) and cluster analysis using the SPSS®

7.0 software (IBM, NY, USA) were perfor-
med to group similar forest remnants based
on  soil  variables  after  log10 transformation
(pH-CaCl2,  carbon,  nitrogen,  C/N  ratio,
phosphorus,  sulfur,  cation  exchange  capac-
ity,  aluminum  saturation,  base  saturation,
copper,  iron,  manganese,  zinc,  sand  and
clay).  Cluster  analysis  was perfomed using
the Ward’s algorithm, and the  distances be-
tween  the  fifteen  variables  were  calculated
by Pearson’s correlation.

Results
Soil  texture  (granulometry)  at  all  depths

was  sandy-clay  in  Americana,  sandy-clay-
loam in Paulínia, Holambra and Cosmópolis
and clay in Jaguariúna and Campinas (Tab.
2).  Significant  negative  correlations  (p  <

© SISEF http://www.sisef.it/iforest/ 800  iForest (2015) 8: 798-808

Tab. 1 - Main characteristics (area, distance from industrial complex, land use in surrounding areas), location (geographical coordinates),
soil (litter layer, type, parent material) and vegetation structure (basal area, tree density) of semideciduous Atlantic Forest remnants in the
Metropolitan Campinas Region (MCR), Brazil. (*): Domingos et al. (2015); (**): A.R. Santos et al., unpublished data.

Characteristics
Paulínia

(PA)
Holambra

(HO)
Americana

(AM)
Jaguariúna

(JA)
Campinas

(CA)
Cosmópolis

(CO)
Area (ha) 180 47 74 6 235 120
Distance from industrial 
complex (km)

4.5 9.3 10.0 10.5 11.2 12.1

Geographical coordinates 22° 44′ 58″ S
47° 05′ 55″ W

22° 39′ 33″ S
47° 06′ 42″ W

22° 42′ 30″ S
47° 12′ 40″ W

22° 43′ 35″ S
47° 01′ 32″ W

22° 49′ 22″ S
47° 06′ 17″ W

22° 37′ 38″ S
47° 08′ 02″ W

Land use in surrounding 
areas

Industrial/Agricul-
tural (sugarcane)

Agricultural
(citrus sugarcane)

Agricultural
(sugarcane)

Urban/Agricul-
tural (sugarcane)

Urban/Agricul-
tural (sugarcane)

Agricultural
(sugarcane)

Basal area
(tree dbh >10 cm, m2 ha-1)*

17.2 29.7 19.2 20.2 26.8 21.5

Tree density (ind ha-1)* 556 588 550 400 528 706
Litter layer (Mg ha-1)** 9.1 10.3 9.1 11.8 10.5 8.1
Soil Type red-yellow oxisol red-yellow oxisol red-yellow oxisol red oxisol red oxisol red-yellow oxisol
Parent material diabase

sandstone
Sandstone siltstone 

rhythmites 
diabase diabase diabase sandstone

siltstone
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0.001) were found between the sand content
and Corg, Ntot, S and Cu concentrations in
soils. Conversely, significant positive corre-
lations  were  identified  between  the  above
elements and the clay content (Tab. 3).

The variation with depth of soil  chemical
parameters are presented in  Fig. 2 to 5. All
elements decreased in concentration from the
surface to the deeper soil layers, with the ex-
ceptions of S and Al.

The largest amounts of Corg, Ntot, and ex-
tractable P and S were found in soils from
Jaguariúna and Campinas (p<0.05), whereas
the  lowest  levels  were  found  in  Holambra
and Cosmópolis (Fig. 2). The Corg contents
varied from medium (< 15 g dm-3)  to high
(20 to 31 g dm-3) and were directly related to
the high levels of organic matter. The Corg

in soils was correlated positively with Ntot,
CEC, P and Cu. The Ntot content was corre-
lated  with  the  same parameters,  as  well  as
with S content (Tab. 3).

The extractable P and S levels were similar
in the soils of sampling sites in Paulínia, Ho-
lambra,  Americana  and  Cosmópolis  and
were significantly higher  in Jaguariúna and
Campinas (p<0.05 -  Fig.  2). The P content
values were significantly and positively cor-
related  with  CEC  and  Cu  concentrations
(Tab. 3).

The C/N ratio (< 11/1) was low and similar
in all sampling sites. Primarily in Jaguariúna
and Campinas soils, such ratio indicated an
optimal  decomposition  of  the  soil  organic
matter (Fig. 2).

The soils were extremely acidic in all the

forest remnants analyzed (pH < 4.5 - Fig. 3).
However,  pH  values  of  soil  samples  from
Americana and Paulínia (3.6-3.9) were lower
than  those  from Jaguariúna  and  Campinas
(4.0-4.5).

Soil  samples from Jaguariúna and Campi-
nas sites had low Al concentrations (0.5-0.6
cmol  dm-3),  high  base saturation (28-29%),
and high contents of exchangeable Ca (2.6-
2.9 cmol dm-3) and Mg (0.9-1.5 cmol dm-3),
available P (0.15-0.21 cmol dm-3), Corg (27-
31 g dm-3) and Ntot (2.8-3.2 g dm-3) in the
surface  layer  (Fig.  3,  Fig.  4).  By contrast,
high Al content and low basic cations (Ca,
Mg and K) were found in the Americana soil
(Fig. 3, Fig. 4). Correlation analysis revealed
significant  negative  associations  between
CEC and V%, V% and m% or Fe, and m%
and  Mn  or  Zn.  Positive  associations  were
found between CEC and m%, Fe or Mn, and
V% and Mn or Zn (Tab. 3).

The studied forest sites had different con-
centrations  of  available  heavy metals  (Fig.
5). The levels of Cu (5.0 mg dm-3) and Zn
(2.4  mg dm-3)  were  significantly higher  in
the Campinas soil.  The levels of Fe in  the
Americana (228 mg dm-3) and Paulínia (208
mg  dm-3)  soils  were  significantly  higher.
Higher levels of Mn were detected in the soil
from the  Holambra  forest  (64.4  mg  dm-3).
The available levels of Zn and Mn showed a
significant  positive  correlation  with  each
other.  Levels of Mn were negatively corre-
lated with Fe contents (Tab. 3).

Tab. 4 summarizes the results of the corre-
lation  analysis  between pH values and soil
characteristics for each forest  fragment stu-
died. The soil pH in the Paulínia forest was
negatively correlated with Ntot, Al, CEC, m
%, Cu, Fe and sand and was positively corre-
lated with Mn, silt and clay. In the Holambra
site,  the  pH was negatively correlated with
Al  and  m%  and  was  positively  correlated
with K, Ca, Mg, V%, Mn and Zn. The pH
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Tab. 2 - Soil texture at 0-10 cm, 10-20 cm and 20-40 cm depths of semideciduous Atlantic
Forest remnants in the Metropolitan Campinas Region (MCR), Brazil (mean ± standard er -
ror, n = 12).

Sampling site
Depth 
(cm)

Sand
(g kg-1)

Silt
(g kg-1)

Clay
(g kg-1)

Texture

Paulínia (PA) 0 - 10 698 ± 37 55 ± 6 247 ± 33 Sandy-clay-loam
10 - 20 684 ± 33 49 ± 6 267 ± 29 Sandy-clay-loam
20 - 40 666 ± 36 46 ± 4 288 ± 33 Sandy-clay-loam

Holambra (HO) 0 - 10 702 ± 20 81 ± 15 217 ± 15 Sandy-clay-loam
10 - 20 704 ± 19 79 ± 8 217 ± 16 Sandy-clay-loam
20 - 40 700 ± 19 74 ± 9 226 ± 16 Sandy-clay-loam

Americana (AM) 0 - 10 559 ± 12 75 ± 13 366 ± 18 Sandy-clay
10 - 20 546 ± 13 78 ± 15 376 ± 16 Sandy-clay
20 - 40 521 ± 12 86 ± 10 393 ± 16 Sandy-clay

Jaguariúna (JA) 0 - 10 346 ± 6 90 ± 2 564 ± 4 Clay
10 - 20 321 ± 6 77 ± 7 602 ± 1 Clay
20 - 40 301 ± 6 85 ± 2 614 ± 4 Clay

Campinas (CA) 0 - 10 372 ± 29 168 ± 4 460 ± 29 Clay
10 - 20 340 ± 26 163 ± 5 497 ± 29 Clay
20 - 40 353 ± 28 171 ± 6 476 ± 31 Clay

Cosmópolis (CO) 0 - 10 731 ± 17 55 ± 6 214 ± 13 Sandy-clay-loam
10 - 20 714 ± 19 52 ± 6 234 ± 13 Sandy-clay-loam
20 - 40 693 ± 18 56 ± 7 251 ± 14 Sandy-clay-loam

Tab. 3 - Spearman’s correlation coefficients among edaphic variables in the 0-10 cm soil layer in semideciduous Atlantic Forest remnants in
the  Metropolitan  Campinas  Region  (MCR),  Brazil.  (CEC):  Cation  exchange  capacity  =  Ca+Mg+K+Al+H;  (V%):  Base  saturation  =
[(Ca+Mg+K)/CEC]·100; (m%): Aluminum saturation = (Al/Ca+Mg+K+Al)·100. (*): p<0.05; (**): p<0.01; (***): p<0.001. 

Variable Corg Ntot P S CEC V% m% Cu Fe Mn Zn Sand Clay

Corg 1.00 - - - - - - - - - - - -
Ntot 0.86*** 1.00 - - - - - - - - - - -
P 0.67*** 0.65*** 1.00 - - - - - - - - - -
S 0.34 0.56*** 0.43 1.00 - - - - - - - - -
CEC 0.74*** 0.65*** 0.67** 0.35 1.00 - - - - - - - -
V% -0.04 0.04 0.30 0.07 -0.56*** 1.000 - - - - - - -
m% -0.00 -0.05 -0.29 -0.01 0.50*** -0.96*** 1.00 - - - - - -
Cu 0.71*** 0.69*** 0.65*** 0.33 0.43 0.20 -0.26 1.00 - - - - -
Fe 0.29 0.18 -0.06 -0.17 0.65*** -0.79*** 0.77*** 0.02 1.00 - - - -
Mn -0.25 -0.27 0.08 -0.16 0.65*** 0.81*** -0.85*** 0.10 -0.77*** 1.00 - - -
Zn 0.31 0.33 0.47 0.16 -0.18 0.75*** -0.75*** 0.48 -0.48 0.61*** 1.00 - -
Sand -0.55*** -0.64*** 0.47 -0.62*** -0.38 0.14 0.13 -0.67*** 0.06 0.07 -0.37 1.00 -
Clay 0.53*** 0.60*** 0.44 0.60*** 0.41 0.06 -0.05 0.58*** 0.03 0.43 -0.95*** 0.48 1.00
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Fig. 2 - Soil organic carbon (A), total nitrogen
(B), extractable phosphorus (C) and sulfur

(D), and C/N ratio (E) at 0-10 cm, 10-20 cm
and 20-40 cm depths of semideciduous At-
lantic Forest remnants in the Metropolitan
Campinas Region (MCR), Brazil (mean ±

standard error, n = 12).

Fig. 3 - Soil pHCaCl2 (A), cation exchange ca-
pacity (CECpH7 - B), aluminum saturation (m
% - C) and base saturation (V% - D) at 0-10

cm, 10-20 cm and 20-40 cm depths of semide-
ciduous Atlantic Forest remnants in the Me-
tropolitan Campinas Region (MCR), Brazil

(mean ± standard error, n = 12).
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Fig. 4 - Soil exchangeable 
potassium (A), calcium 
(B), magnesium (C) and 
aluminum (D) at 0-10 cm, 
10-20 cm and 20-40 cm 
depths of semideciduous 
Atlantic Forest remnants in
the Metropolitan Campinas
Region (MCR), Brazil 
(mean ± standard error, n =
12).

Fig. 5 - Soil extractable 
copper (A), iron (B), man-
ganese (C) and zinc (D) at 
0-10 cm, 10-20 cm and 20-
40 cm depths of semide-
ciduous Atlantic Forest 
remnants in the Metropoli-
tan Campinas Region 
(MCR), Brazil (mean ± 
standard error, n = 12).
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values found in the forest soil from Ameri-
cana were negatively associated with Corg,
Ntot, C/N ratio, P, K, CEC, Cu, Fe, Mn, Zn
and sand and were positively associated only
with S content. In soil samples from Jagua-
riúna  and  Campinas,  positive  relationships
were found between pH and Corg, Ntot, P,
K, Ca, Mg, V%, Cu, Mn and Zn, and nega-
tive relationships were observed between pH
and S,  Al,  m% and clay.  In  soils from the
Cosmópolis  site,  K,  Ca,  Mg,  V% and  Mn
values  were  positively  correlated  with  soil
pH, whereas and Al and m% were negatively

correlated with soil pH.
Fig.  6 and  Fig.  7 show the differences in

the soil physical and chemical parameters of
the forest sites analyzed. The first two prin-
cipal components accounted for 72% of the
overall variation in the dataset (Fig. 6). The
variables clay, CEC, Corg, Ntot, S, and Cu
from Jaguariúna  and  Campinas  were  grou-
ped on the positive side of the first PC axis.
The second PCA group was made up by pH,
V%, P, Zn and Mn (negative side of PC axis
2 - Fig. 6) for all sites in the 0-10 cm layer,
except Americana. For deeper soil layers, the

sand fractions from Cosmópolis and Holam-
bra were separated on the negative side of
PC axis 1 and 2. The variable m% was iso-
lated on the positive side of PC axis 2 only
for the Americana forest.

The  cluster  analysis  distinguished  three
groups  at  a  0.06  linkage  distance (Fig.  7).
The soil from the Americana forest site was
included in the first group, whereas the soils
of the  Cosmópolis,  Paulínia  and  Holambra
forest remnants were included in the second
group.  Finally,  the third group was formed
by the soils from Jaguariúna and Campinas.
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Fig. 6 - Principal component analysis
(PCA) of soil characteristics from 0-

10 cm (10), 10-20 cm (20) and 20-40
cm (40) depths of semideciduous At-
lantic Forest remnants in the Metro-

politan Campinas Region (MCR),
Brazil. (PA): Paulínia; (HO): Holam-

bra; (AM): Americana; (JA): Jagua-
riúna; (CA): Campinas; (CO): Cos-

mópolis; (CEC): cation exchange ca-
pacity; (V%): base saturation; (m%):

aluminum saturation.

Tab. 4 - Spearman’s correlation coefficients between pH and physical and chemical parameters in the 0-40 cm soil layer in semideciduous
Atlantic Forest remnants in the Metropolitan Campinas Region (MCR), Brazil. (PA): Paulína; (HO): Holambra; (AM): Americana; (JA):
Jaguariúna;  (CA):  Campinas;  (CO):  Cosmópolis;  (CEC):  cation  exchange  capacity  =  Ca+Mg+K+Al+H;  (V%):  base  saturation  =
[(Ca+Mg+K)/CEC]·100; (m%): Aluminum saturation = (Al/Ca+Mg+K+Al)·100. (*): p<0.05; (**): p<0.01; (***): p<0.001.

Parameters PA HO AM JA CA CO
Corg -0.73*** 0.37 -0.76*** 0.88*** 0.81*** 0.28
Ntot -0.69*** 0.21 -0.43 0.85*** 0.76*** 0.39
C/N -0.45 0.41 -0.57*** 0.04 0.18 -0.07
P -0.46 0.49 -0.56*** 0.89*** 0.65*** 0.33
S -0.27 0.36 0.73*** -0.76** 0.12 0.06
K -0.01 0.56*** -0.58*** 0.92*** 0.60*** 0.52**
Ca 0.45 0.87*** -0.46 0.85*** 0.74*** 0.56***
Mg 0.40 0.84*** -0.51** 0.95*** 0.87*** 0.53**
Al -0.79*** -0.86*** -0.20 -0.94*** -0.94*** -0.69***
CEC -0.88*** -0.25 -0.84*** 0.42 0.35 -0.12
V% 0.73*** 0.92*** -0.12 0.89*** 0.84*** 0.60***
m% -0.63*** -0.88*** 0.36 -0.95*** -0.91*** -0.63***
Cu -0.50*** 0.15 -0.76*** 0.80*** 0.70*** 0.09
Fe -0.80*** 0.11 -0.81*** 0.79*** -0.23 0.03
Mn 0.52** 0.77*** -0.61*** 0.94*** 0.80*** 0.51**
Zn 0.11 0.65*** -0.70*** 0.85*** 0.66*** 0.39
Sand -0.69** 0.42 -0.19 0.56 0.27 0.11
Silt 0.66** -0.31 0.18 0.33 0.06 0.06
Clay 0.72*** -0.33 0.13 -0.69* -0.25 -0.13
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Discussion
Higher concentrations of nutrients in the 0-

10 cm soil layer compared to those at deeper
layers  were observed in  all  the  forest  rem-
nants analyzed,  indicating that the soil sur-
face likely had the conditions needed to buf-
fer the atmospheric deposition. Additionally,
organic matter content was higher in the sur-
face layer, as commonly observed in tropical
soils (Ostertag et al. 2008, Tang et al. 2010).
A substantial litter layer on the soils (Tab. 1)
also explained the higher available nutrients
on the soil surface.

Soil samples from sites showing a clay tex-
ture  (Campinas  and  Jaguariúna)  contained
higher levels of basic cations than those with
a more sandy texture (Americana, Cosmópo-
lis, Paulínia and Holambra) where leaching
was increased. Soil physical parameters have
important  influences  on  hydrological  pro-
cesses and plant growth (Li et al. 2007). The
sand and clay fractions primarily differ in the
number of ion exchange sites (Materechera
& Mkhabela  2001).  Therefore,  the positive
correlations  between  clay content  and  car-
bon,  total  nitrogen,  sulfur and copper were
likely due to the adsorptive properties of the
fine soil  particles to organic matter, as dis-
cussed by Feller & Beare (1997).

The Corg, Ntot and the C/N ratio provide
information about the chemical status of soil
(Härdtle et al. 2004,  Leuschner et al. 2013,
Xiaogai et al. 2013, Cools et al. 2014). The-
se  parameters  are  particularly important  in
tropical  soils,  where the availability of nu-
trients  is  low and  the  weathering  rates  are
high (Feller & Beare 1997). Many nutrients

are released to the soil during the mineraliza-
tion of organic matter, including Ca, Mg, P,
K, S and micronutrients  (Ross et  al.  2008,
SanClements  et  al.  2010).  Therefore,  the
high Corg and basic cation (Ca, Mg and K)
contents found in the forest soils from Cam-
pinas  and  Jaguariúna,  along  with  the  low
C/N ratio, indicated that soil mineralization
and litter  turnover  were more rapid,  which
provided  optimal  conditions  for  plant
growth.

Positive  correlations  were  found  between
the  high  concentrations  of  Ntot,  measured
primarily  in  soil  samples  from  Jaguariúna
and  Campinas  (Fig.  2),  and  the  levels  of
Corg, available P and S, CEC and the clay
fraction (Tab. 3). These correlations suggest
a direct impact on soil chemical properties of
organic matter (Härdtle et al. 2004) and in-
puts of atmospheric nitrogen from vehicular
emissions  and  fertilization  of  surrounding
agricultural  areas.  Also,  these  activities  li-
kely contributed to the high levels of S in the
soils of Campinas and Jaguariúna,  whereas
the industrial complex probably contributed
to sulfur deposition in Americana and Paulí-
nia. Indeed,  in the Cosmópolis and Holam-
bra forests which are more distant from the
industrial complex, the S levels were lower,
indicating  that  sulfur  deposition  decreases
with increasing the distance from the emis-
sion  source.  In  contrast  to  the  other  ele-
ments, S increased with depth,  primarily in
Campinas soils (17.9 g.dm-3 on the surface
and 47.0 g.dm-3 in subsoil), indicating its ac-
cumulation at deeper soil layers.

Abiotic conditions in combination with at-

mospheric inputs results in soil acidification,
which affects the development of the forest
(Horswill et al. 2008,  Farr et al. 2009,  Hédl
et al. 2011, Badea et al. 2012). In the present
work,  the  soils  were  extremely acidic  (pH
3.6-4.5)  in  all  forest  fragments,  caused  by
high  aluminum  saturation  and  low  basic
cations,  as  typically  observed  in  different
tropical forests (Stevens et al. 2009,  Fujii et
al.  2011,  Whittinghill  &  Hobbie  2012).
However, the forest soils near the industrial
complex  (Paulínia  and  Americana)  were
more acidic (pH = 3.6-3.9) than those loca-
ted farther apart from industries near rural or
urban sources (pH = 4.0-4.5), indicating that
acidic  deposition  increases  near  the  indus-
trial area.

The pH and base saturation are important
indicators of chemical processes in the soil
and thus are key descriptors for monitoring
forest changes (Cools & Des Vos 2011). The
low  V%  might  have  been  related  to  the
leaching  of  basic  cations  (K+,  Ca2+ and
Mg2+), which had a direct influence on soil
acidity and increase of m% (Jobbágy & Jack-
son  2001,  Boruvka  et  al.  2005,  Ok et  al.
2007,  Kimetu  et  al.  2008,  Ke-Hui  et  al.
2010,  SanClements et  al.  2010), as well  as
on the availability of heavy metals (Wei et
al.  2006,  Wilson et al. 2008,  Stevens et al.
2009).  Furthermore,  basic  cations  and  or-
ganic matter buffer the soil acidity (Ross et
al.  2008,  Ke-Hui  et  al.  2010).  Hence,  the
mobilization of Al and Fe at low pH values
(4.2 and 3.8, respectively),  as suggested by
Ke-Hui et al.  2010,  could explain the high
levels  of  these  elements  in  the  Americana
and Paulínia soils (Fig. 4 and Fig. 5).

The parent material,  weathering processes
and  pollution  inputs  affect  the  content  of
heavy metals in the soil (Matos et al. 2001,
Wilson  et  al.  2008,  Song  &  Gao  2011,
Chrastný et al. 2012). Soils derived from ba-
sic rocks naturally have more heavy metals
(including Cu, Ni and Zn) than those derived
from sandstone,  siltstone or gneiss (Wilson
et  al.  2008,  Nagajyoti  et  al.  2010).  In  the
Campinas region,  Miranda & Tomaz (2008)
reported that the soil was the main source of
aluminum,  while  for  zinc,  copper  and  sul-
phur  the  main  sources  were industries  and
vehicle  emissions.  Monaci  et  al.  (2000)
found  high  concentrations  of  aluminum,
iron, copper, manganese and zinc in the par-
ticulate  material  originated  from  vehicular
emissions. Therefore, the soil parent material
(diabase) and the urban air  pollution could
both explain the high concentrations of Cu
and  Zn  in  the  Campinas  and  Jaguariúna
soils.

The  PCA  highlighted  the  direct  relation-
ship among the CEC, the Corg and the clay
fraction.  The  variables  were  clearly  sepa-
rated under the criteria of soil acidity, nutri-
ent availability and m%. The sand fraction in
the Cosmópolis and Holambra soils was di-
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Fig. 7 - Cluster analysis on data from 0-40 cm soil layer of semideciduous Atlantic Forest
remnants in the Metropolitan Campinas Region (MCR), Brazil. (PA): Paulínia; (HO): Ho-
lambra; (AM): Americana; (JA): Jaguariúna; (CA): Campinas; (CO): Cosmópolis.
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rectly  related  to  the  increase  in  nutrient
leaching to deeper soil  layers,  whist  it was
related to the Al toxicity and high acidity in
the Americana site. This separation was con-
firmed by cluster analysis  that  grouped  the
Jaguariúna  and  Campinas  forests  by  the
characteristics  of  more  optimal  chemical
conditions and texture (primarily because of
the proportion of clay). Such conditions con-
trast  with  the Americana forest  soil,  which
was  more  acidic,  characterized  by  higher
levels  of  Al  and  lower  exchangeable  base
cations,  and  sandy-clay texture.  Soils  from
the  Cosmópolis,  Paulínia  and  Holambra
forests were grouped because of their similar
chemical and physical conditions.

Conclusions
Remnants  of  the  semideciduous  Atlantic

Forest in the MCR are growing on soils with
distinct  chemical  and  physical  conditions
due to the parent material and the deposition
of air pollution. The optimal chemical condi-
tions (high contents of exchangeable bases,
nitrogen, phosphorus and sulfur) were found
in the clay soils of Jaguariúna and Campinas,
which  are  more affected  by rural  or  urban
pollution and less impacted by the industrial
complex.  These soils  are expected to show
the best buffering capacity against  environ-
mental pollution. However, air pollution de-
position  was  related  to  the  acidification  of
sandy soils  in  forest  fragments  more influ-
enced by the industrial complex. Therefore,
the  Atlantic  Forest  vegetation  in  Paulínia,
Cosmópolis,  Holambra  and  Americana
might  be  more  susceptible  to  air  pollution
than the forest remnants located in Campinas
and Jaguariúna.
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