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Future ground-level concentrations of phytotoxic ozone are projected to grow
in the Northern Hemisphere, at a rate depending on emission scenarios. We
explored the likely changes in net ecosystem production (NEP) due to the in-
creasing concentration of tropospheric ozone by applying a Generalized Addi-
tive Mixed Model based on measurements of ozone concentration ([O3]) and
stomatal  ozone flux  (FsO3),  at  a  mountainous  Norway spruce forest  in  the
Czech Republic, Central Europe. A dataset covering the growing period (May-
August 2009) was examined in this case study. A predictive model based on
FsO3 was found to be marginally more accurate than a model using [O3] alone
for prediction of the course of NEP when compared to NEP measured by the
eddy covariance technique. Both higher [O3] and FsO3 were found to reduce
NEP. NEP simulated at low, pre-industrial FsO3 (0.5 nmol m-2 s-1) was higher by
24.8% as compared to NEP assessed at current rates of FsO3 (8.32 nmol m-2 s-1).
However, NEP simulated at high FsO3 (17 nmol m-2 s-1), likely in the future, was
reduced by 14.1% as compared to NEP values at current FsO3. The interaction
between environmental factors and stomatal conductance is discussed in this
paper.
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Introduction
Tropospheric ozone (O3), a common phy-

totoxic  secondary  air  pollutant,  reduces
growth and carbon sequestration potential
of  terrestrial  vegetation  (Subramanian  et
al. 2015). Despite the limited nature of ob-
servations in the 19th century,  ozone con-
centrations  are  reported  to  have  under-
gone an increase from the base level of 10-
15 ppbv in the pre-industrial era (Royal So-
ciety  2008)  to  current  concentrations  of
35-45  ppbv in  large parts  of  the industri-
alised  world,  with  an  average  rate  of  in-
crease of about 5 ppbv per decade in the
Northern Hemisphere (Cooper et al. 2014).
It is estimated that the long-term increase
in tropospheric O3 concentration ([O3]) has
led to a substantial reduction in carbon up-
take, as compared to the pre-industrial era
(Cooper et al. 2014). While daily maxima of
[O3] may now be decreasing, annual mean

[O3] has been increasing over the last de-
cade (Paoletti et al. 2014).

Recent  studies  at  different  hierarchical
levels have shown that O3 reduces photo-
synthetic carbon assimilation and changes
carbon allocation in trees and forest eco-
systems  (Wittig  et  al.  2009,  Sicard  et  al.
2016). It has been demonstrated that O3 al-
ters  the  source-sink  balance  in  plants,
resulting  initially  in  carbon  retention  in
shoots and decreased carbon allocation in
below  ground  biomass  (reviewed  by  An-
dersen 2003). Rising [O3] thus has a signifi-
cant  potential  to affect  terrestrial  carbon
sinks and regional hydrology (Wittig et al.
2009,  Sun et al. 2012). Most of the studies
were, however, conducted on seedlings or
juvenile trees and the assessment of the O3

impact on mature trees is still  at an early
stage (Zapletal et al. 2011, 2012, Fares et al.
2013).  Accordingly,  there  is  an  increasing

demand  for  long-term  studies  conducted
under natural,  ecologically  relevant condi-
tions (Fares et al. 2018).

To quantify the detrimental dose of O3 on
vegetation,  several  indices  have  been  es-
tablished:  AOT40  (accumulated  exposure
over a threshold of 40 ppbv) and PODy (ac-
cumulated  ozone flux  above a  given  flux
threshold y [nmol m-2 s-1]). Critical levels are
assessed as an estimation above which de-
trimental  effects  may  occur.  The  magni-
tude of  both indices depends on species,
environmental conditions and the capacity
of plant defence mechanisms (Musselman
& Massman 1998). Verryckt et al. (2017) re-
ported no impact of ambient [O3] on car-
bon uptake in sub-urban mature pine for-
est in the vicinity of Antwerp city, Belgium,
although the critical levels for both AOT40
and POD1 indices were exceeded. Similarly,
an ambient [O3] of 50 ppbv (mean value)
had no effect on leaf injury in black cherry
and red maple seedlings during the period
of April-August. While visible symptoms of
foliar injury were observed under doubled
[O3] (Samuelson 1994), no visible damages
of leaves nor reduction in CO2 uptake were
observed in poplar plantation at a cumula-
tive stomatal O3 uptake of 25-27 mmol m-2

(Zona et al. 2014).
Contrary  to  these  findings,  growth  de-

creased by 6.6% in Swiss forests during the
period  1991-2011,  particularly  in  European
beech  and  Norway  spruce  (Braun  et  al.
2014), and this decline was ascribed to ris-
ing  [O3].  Similarly,  Gross  Primary  Produc-
tion (GPP) was reduced by 4-8% on average
in eastern US vegetation peaking up to 11-
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17%  during  an  occurrence  of  high  O3

episodes (Yue & Unger  2014).  Only a  lim-
ited effect of O3 on photosynthesis was ob-
served in the broad-leaved Harvard forest
(Yue et al. 2016). Norway spruce (Picea ab-
ies  Karst.),  a  wide-spread  tree  species  of
the temperate zone and especially Central
Europe,  has previously been described as
an ozone sensitive tree species (Zapletal et
al. 2011).  Subramanian et al. (2015), among
others,  reported  a  decrease  in  photosyn-
thetic carbon assimilation of 4.3-15.5% due
to an exposure to high [O3]. As most stud-
ies  were  conducted  on  seedlings  under
controlled conditions (Skärby et al.  1998),
estimation and quantification of O3 effects
at  the ecosystem scale  under field  condi-
tions received only limited attention.

In  the  present  study,  we  attempted  to
quantify the effect of O3 on Net Ecosystem
Production  (NEP),  defined  as  the  differ-
ence  between  ecosystem-level  photosyn-
thetic uptake of CO2 and ecosystem respi-
ratory  loss  of  CO2.  Our  attention was  fo-
cussed on a mountainous spruce forest in
the Czech Republic.  NEP values measured
by  eddy  covariance  were  compared  to
those estimated by the Generalized Addi-
tive Mixed Model (GAMM). We tested the
efficacy  of  [O3]-  and  stomatal  ozone flux
(FsO3)-based GAMM models to predict di-
urnal and seasonal changes in NEP. To de-
termine O3 effects, NEP was calculated in a
simulation model at low, pre-industrial [O3]
(12 ppbv) and FsO3 (0.5 nmol m-2 s-1) as well
as at high [O3] (80 ppbv) and FsO3 (17 nmol
m-2 s-1) expected at the end of the century
(Meehl et al. 2007, Cooper et al. 2014). We
hypothesized that  tropospheric  ozone re-
duces NEP in Norway spruce forest. To test
this hypothesis, we investigated effects of
[O3] and FsO3 on NEP during four represen-
tative days of the main growing season dif-
fering in degree of cloudiness and thus in
daily  maxima  of  solar  radiation  intensity,
air  temperature,  and vapour  pressure de-

ficit.  These  representative  days  also  cov-
ered seasonal  course in NEP and enabled
thus to model effects of [O3] and FsO3 on
NEP throughout the growing season (May-
August).

Material and methods

Site description
The forest stand is located at the Bílý Kříž

experimental research site within the Bes-
kydy  Mountains  in  the  north-east  of  the
Czech Republic  (49°  30′ N,  18°  32′ E;  875-
908  m  a.s.l.).  The  experimental  research
site forms part of several international re-
search  networks  and  infrastructures:
CzeCOS  (Czech  Carbon  Observation  Sys-
tem),  ICOS  (Integrated  Carbon  Observa-
tion System), and AnaEE (Analysis and Ex-
perimentation on Ecosystems). The forest
stand (99%  Picea abies and 1%  Abies  alba)
had been established in 1981 by row plant-
ing of 4-year-old Norway spruce seedlings.
Mean stand slope is 13° and exposure is to
the south.  In 2009,  the year of  investiga-
tion,  the average stand height  was  13  m,
tree  density  was  1420  trees  ha-1,  average
stem  diameter  at  breast  height  was  15.9
cm,  and  leaf  area  index  based  on  hemi-
spherical photographs was 9.6 m2 m-2.

The area has a moderately cool (mean air
temperature 6.8 °C) and humid (mean rela-
tive air humidity 84%) climate with high an-
nual precipitation (mean annual  precipita-
tion 1318 mm; years 1998-2009). Due to an
even distribution of precipitation over the
year,  values of  soil  volumetric  water  con-
tent remain high during the growing sea-
son ranging between 20 and 30% irrespec-
tive of sky conditions. The region is charac-
terized by low concentrations of nitrogen
oxides (below 10 ppbv) and high [O3], ex-
ceeding  80 ppbv  during  summer  months
(Zapletal et al. 2011). Diurnal courses of se-
lected  environmental  variables,  including
diurnal changes in [O3], for representative

days are shown at Fig. 1.

Measurement of environmental 
variables

The measurements were conducted from
May 28 to September 30, 2009, during the
daytime (06:00-18:00 GMT+1) to cover the
periods  characterized  by  well-developed
turbulent  mixing.  A  meteorological  mast
(36  m  tall)  situated  within  the  studied
stand was equipped with a set of meteoro-
logical sensors and an eddy covariance sys-
tem. Air temperature (Tair) and relative air
humidity (RH) were measured by an EMS33
Rotro® sensor (EMS, Brno, Czech Republic).
These variables were used to calculate the
values of vapour pressure deficit (VPD) ac-
cording to the formula (eqn. 1):

(1)

The barometers PTB110® (Vaisala, Vantaa,
Finland)  and  SPA  511  B5UB® (CRESSTO,
Roznov  pod  Radhostem,  Czech  Republic)
were used to measure air pressure. Global
radiation  (GR)  was  measured  by  a  pyra-
nometer  CM6B® (Kipp  &  Zonen,  Delft,
Netherlands). The 2D ultrasonic anemome-
ter  50.5  (Met  One  Instruments,  Grants
Pass, OR, USA) was used for the measure-
ment  of  horizontal  wind  speed.  All  stan-
dard  meteorological  measurements  were
made on a vertical profile at heights of 2, 7,
10, 11.5, 12.25, 13, 13.5, 14, 15, 17, 21, and 28 m
above the soil surface. The signals from all
sensors  were  recorded  every  30  s  and
stored as half-hourly averages using a data
logger (Delta-T®,  Burwell,  Cambridgeshire,
UK).  In  addition,  precipitation  was  re-
corded by a precipitation gauge 386C (Met
One Instruments, Grants Pass, OR, USA).

Estimation of CO2 and O3 fluxes
An eddy covariance system was used to

measure the CO2 and water vapour fluxes
between the forest stand and the atmos-
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Fig. 1 - Diurnal courses of 
global radiation (A), air 
temperature (B), vapour 
pressure deficit (VPD, C), 
and ozone concentration
(D) during the represen-
tative days.
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Predicting ozone effects

phere. The system consisted of a Gill R3® ul-
trasonic  anemometer  (Gill  Instruments,
Hampshire,  UK)  and  an  enclosed-path  in-
frared  gas  analyser  LI-7200® (LI-COR  Bio-
sciences,  Lincoln,  NE,  USA)  placed  18  m
above the soil surface. The post-processing
of  high  frequency  data  (20  Hz)  was  per-
formed by EddyPro® software (LI-COR Bio-
sciences, USA) according to recent recom-
mendations  (Aubinet  et  al.  2012)  and  ex-
pressed as half-hourly estimates. This pro-
cedure included spike removal and quality
check of the raw signals, rotation of wind
velocity components into the planar fit co-
ordinate system,  and spectral  corrections
of  computed  fluxes.  The  missing  and  ex-
cluded data, based on the quality checking
scheme,  were  gap-filled  by  the  marginal
distribution sampling method according to
Reichstein  et  al.  (2005).  Sign  convention
was  adopted  as  follows:  positive  values
represent CO2 uptake, thus enabling conve-
nient modelling of  NEP as a  general  non-
rectangular hyperbolic function of incident
GR (Urban et al. 2012).

[O3]  was  measured  at  5,  15,  and  25  m
above the soil surface using slow-response
O3 analysers  O341M® (Environment  S.A.,
Poissy, France). The signals from all O3 anal-
ysers  were  recorded  as  half-hourly  aver-
ages.

Stomatal ozone flux (FsO3) to the Norway
spruce forest was calculated according to
Cieslik (2004 – eqn. 2)

(2)

where c(z) is O3 concentration at a height z
= 2 m above the canopy, Ra is the aerody-
namic resistance for the turbulent layer, Rb

is the laminar layer resistance for the quasi-
laminar layer,  and  Rc is  the surface or ca-
nopy resistance of the receptor. Rc was cal-
culated as (eqn. 3):

(3)

where Rsto is the land-cover specific needle
stomatal resistance to O3 uptake, Rext is the
resistance of the external plant parts to up-
take or destruction of  O3,  Rinc is  the land-
cover specific in-canopy aerodynamic resis-
tance to transport  of  O3 towards the soil
and lower parts of the canopy,  Rsoil is  the
soil resistance to destruction or absorption
of O3 at the ground surface, LAI is leaf area
index, and  SAI is  a surface area index set
equal to LAI in the growing season.

Stomatal  resistance component  Rsto was
calculated as described in  Emberson et al.
(2000 – eqn. 4):

(4)

where  gmax is the average maximum stom-
atal  conductance of  Picea  abies to  ozone
(nmol O3 m-2 s-1) expressed on total needle
surface  area.  The  parameters  gphen,  glight,
gtemp, gVPD, and gSWP are expressed in relative
terms between 0 and 1, and represent the

modification  of  gmax due  to  phenological
changes,  light  intensity,  air  temperature,
vapor pressure deficit,  and soil  water po-
tential,  respectively.  gmin is  the  minimum
FsO3 that occurs during daylight hours.

The  model  was  applied  using  environ-
mental  variables  measured  at  the  experi-
mental  station,  although  soil  moisture
deficit was estimated as a function of pre-
cipitation and daily mean surface tempera-
ture  according  to  the principles  of  water
budget. For more details and the site-spe-
cific  model  parameterisation  see  Zapletal
et al. (2011).

Modelling and statistical analyses
The  Generalized  Additive  Mixed  Model

(GAMM) was implemented in the “mgcv”
package of the R ver. 3.4.0 program (Wood
2017) to assess the dependencies between
NEP and its  predictors GR,  RH,  Tair,  VPD,
and transpiration rate along with [O3] and
FsO3 (Tab. 1).  One-hour averages of all  in-
put  data  were  used  in  GAMM.  Only  the
data  of  the  daytime period  (06:00-18:00)
when GR exceeded 10 W m-2 were used, so
as  to  exclude  periods  where  turbulence
was not well-developed.

All predictors were tested and fitted by a

linear  model,  in  the  form  of  splines  as
smooth functions and as  1st degree linear
interactions. Predictors were centred and,
in  the case of  GR and RH, a  square  root
transformation was used. Day of observa-
tion  and  autocorrelation  pattern  were
tested as random factors. The best model
was selected based on the AIC criteria and
p-values.  The  model  was  started  as  one
component containing all explanatory vari-
ables  together  with  their  interactions.  By
use of  REML (Restricted Maximum Likeli-
hood Estimation) the optimal structure of
the random component was found. Then,
optimal  fixed  structure  using  ML  (Maxi-
mum  Likehood)  estimation  was  deter-
mined.  Within  the  fixed  structure,  REML
estimation was applied again.

Results

Microclimate conditions, [O3] and FsO3

The mean incoming daily sum of GR was
15.8 MJ m-2, mean Tair was 15.03 °C, RH was
81.5%, and precipitation sum was 388 mm
during  the  investigated  period  from  May
28 to September 30. Soil volumetric water
content  remained  high  during  the  whole
growing  season  ranging  between  20  and
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Tab.  1 -  Meteorological  variables  of  the  period May 28-September  30,  2009.  [O 3]:
ozone  concentration;  (FsO3):  stomatal  ozone  flux;  (VPD):  vapour  pressure  deficit;
(GR): global radiation; (RH): relative air humidity; (Tair): air temperature; (Tr): transpi -
ration; (NEP): net ecosystem production: (SD): standard deviation.

Variable Unit Mean SD Range

NEP µmol m-2 s-1 12.1 9.2 -7.9 - 31.7

[O3] ppbv 42.9 11.2 12.0 - 79.5

FsO3 nmol m-2 s-1 8.3 3.6 0.072 - 17.6

GR W m-2 342.3 247.4 0.86 - 974
Tair °C 17.7 6.1 1.3 - 33.8

RH % 75.2 17.3 37.6 - 99.9
Tr mm h-1 0.0878 0.0754 0 - 0.37

VPD kPa 0.624 0.585 0.0006 - 2.89

Fig. 2 - Relative occurrence of stomatal ozone flux (FsO3) during the sunlight hours
modelled for the period May 28-September 30, 2009.
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30%  irrespective  of  actual  sky  conditions.
Four model days, selected on the base of
cloudiness  degree (Fig.  1),  represent  (i)  a
sunny warm day with high Tair and VPD val-
ues (July 22) and (ii) partly-cloudy sky con-
ditions with mild Tair and VPD (June 17 and
August 16). (iii)  The onset of the growing
season (May 30) was characterized by the
minimum values of GR, Tair and VPD. These
days  were  also  characterized  by  distinct
[O3] with daily maxima ranging between 38
and  64  ppbv  (Fig.  1D)  as  well  as  diurnal
courses of  FsO3 (Fig.  S1 in Supplementary
material).  The  most  frequent  FsO3 values
ranged from 8-12  nmol  m-2 s-1 during sun-
light hours when the whole dataset is con-
sidered (Fig. 2).

GAMM outputs
The results of GAMM model for NEP pre-

diction including [O3] and FsO3 are shown
in  Tab.  2 and  Tab.  3,  respectively.  Both
models include a linear and non-linear part,
as illustrated by the Edf parameter, which
is  presented  only  in  the  non-linear  part.
Only  statistically  significant  predictors  are
shown. [O3] and VPD variables are shown
only in  Tab. 2, as their effect on NEP was
only linear. Based on the Edf parameter, it
was shown that FsO3 had a non-linear ef-
fect on NEP (Tab. 3).

Statistically significant (p < 0.01) interac-
tions were found between [O3] and GR and
between FsO3 and GR (Tab. 2, Tab. 3). Both
interactions  had  negative  values  of  para-
metric  estimate (Tab. 2,  Tab.  3) indicating
that [O3] and FsO3 led to a larger reduction
of  NEP  with  increasing  GR.  For  example,
natural  FsO3 led  to a  decrease in  NEP by
1.07  µmol  m-2 s-1,  comparing to  pre-indus-
trial era, at GR <300 W m-2, whereas this re-
duction amounted up to 1.59 µmol m-2 s-1

(23.6%) at GR >500 W m-2. The FsO3 seems
to be more tightly linked to ozone-induced
decline of NEP than [O3] itself, based on ex-
plained  variance  by  the  models  (R2)  and
more significant p-value for FsO3 (p = 7.77e-
13) that [O3] (p = 3.55e-06). GR was identi-
fied as the most important driver of NEP,
having the most significant p values (Tab. 2,
Tab. 3).
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Tab.  2 -  Outputs  of  Generalized  Additive  Mixed  Model  (GAMM)  predicting  mixed
effects of [O3] and other selected micrometeorological variables (predictors) on net
ecosystem production (NEP).  Linear  predictors  and linear  interaction statistics  are
shown as t-values and p-values, whereas statistics of predictors used as smooth terms
are shown as  F-statistics,  p-values and Edf.  × indicate interaction.  (Edf):  estimated
degree of freedom, Edf >1 indicate nonlinear relationships. R2 (adjusted) = 0.948, n =
1440. [O3]: ozone concentration; (VPD): vapour pressure deficit; (GR): global radiation;
(RH): relative air humidity; (Tair): air temperature; (Tr): transpiration (***):  p<0.001;
(**): p<0.01; (*): p<0.05.

Predictor/
Interaction

Goodness of fit Statistics

Parametric 
estimate

Edf t-value F p-value

[O3] -0.042609 - 4.655 - 3.55e-06***
VPD 1.686854 - 2.226 - 0.026154*
[O3] × GR -0.002573 - -3.390 - 0.000717***
GR × RH -0.100322 - -6.310 - 3.73e-10***
GR × Tair 0.013316 - 6.919 - 6.84e-12***
GR × Tr -0.476992 - -3.499 - 0.000481***
VPD × GR -0.280066 - -8.314 - <2e-16***
s(GR) - 2.987 - 6835.670 <2e-16***
s(RH) - 2.878 - 22.424 6.5e-13***
s(Tair) - 2.4577 - 6.775 0.000807***
s(Tr) - 2.384 - 5.168 0.003775**

Tab.  3 -  Outputs  of  Generalized  Additive  Mixed  Model  (GAMM)  predicting  mixed
effects of stomatal ozone flux (FsO3) and other selected micrometeorological vari-
ables (predictors) on net ecosystem production (NEP). Linear predictors and linear
interaction statistics are shown as t-values and p-values, whereas statistics of predic-
tors used as smooth terms are shown as F-statistics, p-values and Edf. × indicate inter-
action. (Edf): estimated degree of freedom; Edf values >1 indicate nonlinear relation-
ships. R2 (adjusted) = 0.95, n = 1440. (FsO3): stomatal ozone flux; (VPD): vapour pres-
sure deficit; (GR): global radiation; (RH): relative air humidity; (Tair): air temperature;
(Tr): transpiration; (***): p<0.001; (**): p<0.01; (*): p<0.05.

Predictor/
Interaction

Goodness of fit Statistics

Parametric
estimate Edf t-value F p-value

VPD 2.301725 - 2.850 - 0.00443**
GR × FsO3 -0.016042 - -4.577 - 5.14e-06***
GR × RH -0.142519 - -7.082 - 2.23e-12***
GR × Tair 0.014084 - 7.378 - 2.73e-13***
VPD × GR -0.388303 - -9.721 - <2e-16***
s(GR) - 2.973 - 6314.858 <2e-16***
s(RH) - 2.865 - 18.079 5.99e-08***
s(Tair) - 2.824 - 11.175 8.78e-07***
s(FsO3) - 2.933 - 22.547 7.77e-13***
s(Tr) - 2.701 - 7.112 0.000131***

Fig. 3 - Modelled relation-
ships between net ecosys-
tem production (NEP) and 
ozone concentration (A) 
and between NEP and 
stomatal ozone flux (B) for
four representative days 
(full line). Models were 
applied with fixed predic-
tors (see Tab. 1) measured 
at 11:00 of these represen-
tative days. Dashed lines 
represent the 95% confi-
dence interval.
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NEP modelling
NEP  was  predicted  using  [O3]  (Fig.  3A)

and FsO3 (Fig. 3B) values in the range from
zero to maximal values determined during
the investigated growing season (May-Sep-
tember).  Values  of  other  predictors  were
fixed  to  values  measured  at  11:00  of  the
representative days. Both models predict a
decrease in NEP with increasing [O3] or in-
creasing  FsO3.  Among  the  representative
days,  the  highest  decrease  of  NEP  was
found  on  May  30th,  amounting  to  21.6%
(model run with [O3]) and 30.4% (model run
with  FsO3)  when  compared  NEP  at  mini-
mum (affected by 12 ppbv and 0.5 nmol m-2

s-1) and maximum (affected by 80 ppbv and
17 nmol m-2 s-1) values of [O3] and FsO3, re-
spectively. In July 22, the warmest month,
the  corresponding  decreases  were  24.9%
and  28.9%.  Diurnal  courses  of  measured
and modelled NEP during four representa-
tive  days  of  the  vegetation  season  are
shown in Fig. 4.

Multi-factorial analysis (Fig. S2 in Supple-
mentary material) revealed that high FsO3

(17 nmol m-2 s-1) has the most significant ef-
fect  on  NEP  reduction  in  summer,  while
NEP  decrease is  driven  more by  GR  than
FsO3 in spring and autumn. Moreover, VPD-
induced stomatal closure was a main factor
limiting NEP and stomatal  O3 flux in Nor-
way  spruce  trees  throughout  the  whole
growing season.  Therefore,  a strong rela-
tionship between NEP reduction and stom-
atal conductance, not only the simple [O3]
outside the leaves, can be suggested.

Taking to the account the whole dataset,
the  GAMM  based  calculated  NEP  was
higher by up to 12.4% at low, preindustrial
ozone  concentration  (12  ppbv)  as  com-
pared to the measured NEP at the present
concentration of 42.9 ± 11.2 ppbv (mean ±
SD – Tab. 1). Similarly, the GAMM based on

FsO3 revealed NEP to be elevated by up to
24.8% under the condition of low FsO3 (0.5
nmol m-2 s-1) as compared to actual FsO3 of
8.3 ± 3.7 nmol m-2 s-1 (mean ± SD). In con-

trast, high [O3] (80 ppbv) and high FsO3 (17
nmol  m-2 s-1)  were found to lead to a de-
crease  in  NEP  by  24%  and  38.9%,  respec-
tively as compared to preindustrial NEP val-
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Fig. 4 - Predicted 
diurnal courses of 
net ecosystem pro-
duction (NEP) using 
Generalized Additive
Mixed Model with 
ozone concentration
(O3, A,B,C,D) and 
stomatal ozone flux 
(FsO3, E,F,G,H). 
Three levels of O3 
and FsO3 were used 
to predict NEP: Blue 
line - low O3 (10 
ppbv) and FsO3 (0.5 
nmol m-2 s-1), red line 
- high O3 (80 ppbv) 
and FsO3 (17 nmol  
m-2 s-1), and black line
- actual, measured 
O3 and FsO3. Green 
line represents NEP 
measured by an 
eddy covariance sys-
tem. Shaded area 
represents predic-
tion bounds at 95% 
confidence level.
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Tab. 4 -  Mean values of ambient (Amb) ozone concentration ([O3];  ppbv) and stomatal ozone flux (FsO3;  nmol m-2 s-1),  and Net
ecosystem production (NEP; µmol m -2 s-1) predicted by a Generalized Additive Mixed Model for the conditions of actual (measured),
high, and low [O3] and FsO3 during the individual months of the growing season and the whole dataset covering May 28-September
30, 2009. Δ represents percentage difference of predicted NEP to mean NEP measured by an eddy covariance system. (a) values of
Δ represent percentage decrease in NEP induced by high O3 (80 ppbv) and/or FsO3 (17 nmol m-2 s-1); (b): values of Δ represent per-
centage increase in NEP at low O3 (12 ppbv) and/or FsO3 (0.5 nmol m-2 s-1).

Months Conditions Amb [O3] Low [O3] High [O3] Amb FsO3 Low FsO3 High FsO3

May [O3]/FsO3 36.5 12 80 5.5 0.5 17
NEP 7.9 9.6 7.2 7.9 10.8 7.2
Δ - 21.5 b 8.9 a - 36.7 b 8.9 a

June [O3]/FsO3 42 12 80 9.1 0.5 17
NEP 10.2 12.5 9.7 10.2 14.1 7.7
Δ - 22.5 b 4.9 a - 38.2 b 24.5 a

July [O3]/FsO3 46.2 12 80 8.98 0.5 17
NEP 15.3 17.2 13.8 15.3 18.7 13.5
Δ - 12.4 b 9.8 a - 22.2 b 11.8 a

Aug [O3]/FsO3 45 12 80 8.5 0.5 17
NEP 12.6 13.9 11 12.6 15.4 10.9
Δ - 10.3 b 12.7 a - 22.2 b 13.5 a

Sept [O3]/FsO3 39.1 12 80 7.2 0.5 17
NEP 10.4 10.8 8.3 10.4 12.3 8.5
Δ - 3.8 20.2 - 18.3 18.3

Whole dataset [O3]/FsO3 42.9 12 80 8.3 0.5 17
NEP 12.1 13.6 10.7 12.1 15.1 10.4
Δ - 12.4 11.6 - 24.8 14.1
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ues  which  were  unaffected  by  high  [O3]
and/or FsO3 (Tab. 4).

In  addition,  we  present  estimated
changes  in  NEP  under  the  conditions  of
low/high  [O3]  and  FsO3 during  individual
months of  the growing season (May-Sep-
tember – Tab. 4). Both models confirmed a
high  percentage reduction  of  NEP  occur-
ring  in  spring  (May-June),  comparing  val-
ues  of  current  NEP to preindustrial  ones,
while the O3-induced NEP reduction in Sep-
tember was relatively small. The largest ab-
solute  reduction  occurred,  however,  in
June  and  July  when  NEP  reaches  a  sea-
sonal  maximum.  Contrary  to  those  find-
ings, the largest percentage and absolute
NEP reductions predicted at high [O3] and
FsO3 were  found  in  September  whereas
the lowest ones in June.

Discussion
Projections of O3-induced damage are un-

certain due to numerous scenarios dealing
with different future [O3] or FsO3. Ozone in
the  Northern  Hemisphere  is  projected  to
increase  further  by  20-25%  between  2015
and 2050, and by 40-60% by 2100, if current
ozone-precursors  (CO2,  volatile  organic
compounds,  NOx)  emission  trends  con-
tinue (Meehl et al. 2007). Sitch et al. (2007)
projected a decrease in NEP by 14-23% over
the period 1901-2100 owing to plant dam-
age caused by [O3] with regional reduction
peeking up to 30%. However, recent stud-
ies suggest [O3] decreases on average by 0-
2 ppbv between 2000-2030 years, rising to
10 ppbv in 2100 in north latitudes (Young et
al. 2013). Those findings are in accordance
with Klingberg et al. (2014), who expected
a  decrease  of  O3 precursors,  particularly
biogenic  volatile  organic  compounds
(BVOCs)  and  nitrogen  oxides  (NOX),  ac-
cording to RCP4.5 scenario,  which should
consequently lead to decrease of European
vegetation damage. However, extreme pe-
riods expected under future climate condi-
tions may lead to episodes with high [O3].
For example, severe drought conditions in
2003 were associated with high [O3] in the
Central Europe (Solberg et al. 2008). In re-
lation to regional climate,  Beniston (2004)
assumed that the year 2003 could be used
as  an analogy of  future dry  summer sea-
sons resulting in high emissions of BVOCs
and NOX (Young et al. 2013), which showed
to depend highly on season also at Bílý Kríž
(Jurán  et  al.  2017).  Future  impacts  on
ozone concentration across  Europe show
contradicting  results:  under  RCP8.5  sce-
nario, [O3] of temperate coniferous forest
could increase by 10.2 ppbv as modelled for
coniferous  forests  at  Hengduan  Shan,
China forests (Fuhrer et al.  2016).  On the
other hand, a modelling study for the tem-
perate  coniferous  forest  of  the  Sierra
Nevada suggests  a  decrease in  [O3]  by  6
ppbv  from  2000  to  2050  (Fuhrer  et  al.
2016) in accordance with the [O3] decrease
by 5 ppbv per decade (Cooper et al. 2014).
In our study we have contrasted the O3 ef-
fects on NEP at low, pre-industrial [O3] of

12 ppbv and high [O3] of 80 ppbv.
Numerous studies  have  shown that  ele-

vated [O3] generally results in reduced pho-
tosynthesis,  chlorophyll  content  and
whole-plant  growth,  decreased  stomatal
conductance,  an  altered  antioxidant  sys-
tem, accelerated senescence and changes
the plant metabolism, although the extent
of the effects varies by species, length of
exposure,  [O3]  and/or  co-occurrence  of
other stress factors (reviewed in  Wallin et
al.  2002,  Kontunen-Soppela  et  al.  2007,
Hoshika  et  al.  2018).  In  accordance  with
these  studies  we  have  found  here  that
both increasing [O3] and FsO3 significantly
reduced NEP of mature Norway spruce for-
est  grown under  natural  mountain  condi-
tions (Fig. 3). Moreover, our analyses show
that the use of FsO3 provides an improved
fit to NEP experimental data as compared
to the predictions  of  a merely [O3]-based
GAMM model, particularly under hot sum-
mer days (Tab. 4). Differences between the
measured and predicted NEP by the model
with [O3]  and FsO3 expressed as a model
error amounted to 0.41% and 0.17%, respec-
tively. The theory behind this is that stom-
ata substantially regulate both CO2 and O3

diffusion into the leaf interior leading thus
to a modulation of photosynthetic activity
and the magnitude of  O3-induced injuries,
respectively.  We assume that stomata re-
main  open  under  the  conditions  of  low
VPD and sufficient light intensity (Urban et
al. 2012). Accordingly, high FsO3 can be ex-
pected  though  ambient  [O3]  is  relatively
low and can lead to a substantial  NEP re-
duction.  On  the  contrary,  conditions  of
high VPD and/or high temperature may re-
sult in a marked closure of stomata. While
an ambient [O3] is usually high under such
conditions,  O3-induced  reduction  of  NEP
may be depressed due to a low FsO3 into a
leaf  interior.  Therefore,  models with  high
FsO3 may predict higher reduction in NEP
than models with high [O3] (Fig. 3). Such re-
sults imply that not only high [O3], but par-
ticularly high FsO3 induces injuries on vege-
tation  and  reduces  carbon  assimilation
(Matyssek et al. 2007, Fares et al. 2013).

We predicted higher NEP (by 24.6% on av-
erage)  at  low  FsO3 of  0.5  nmol  m-2 s-1 as
compared to NEP at current FsO3 of 8.32 ±
3.66 nmol m-2 s-1 with the highest absolute
reduction occurring in June and July (Tab.
4). Karlsson (2012) stated that reduction of
the living biomass carbon stock caused by
the ozone problem among the Central and
Northern European countries ranges from
2% (Norway,  Finland)  to 32% in  the Czech
Republic, when compared to the pre-indus-
trial age. Satellite data over the European
continent  suggest  a  decline  of  photosyn-
thetic carbon uptake ranging between 0.4-
30% due to O3 damage depending on the
forest type and location. Highest negative
effects of O3 were found in coniferous for-
ests (Proietti et al. 2016). Moreover, these
authors identified air temperature, soil wa-
ter content, and relative air humidity as key
predictors of NEP describing more than 81%

of NEP variability. Soil water content was,
however, omitted into our model, since soil
water content was not a limiting factor in
our case study under the wet mountainous
conditions. However, air temperature and
relative air humidity (ultimately VPD), play
significant roles in our model together with
GR.  Similarly  to  our  findings,  Anav  et  al.
(2011) reported  a  reduction  of  photosyn-
thetic  carbon  uptake  per  day  caused  by
[O3] of about 22% in boreal and temperate
forests. FACE fumigation experiment of en-
hanced CO2 and [O3]  on temperate forest
dominated by Betula papyrifera Marsh. and
Acer saccharum Marsh. in USA revealed re-
duction of cumulative net primary produc-
tivity of 9% (Talhelm et al. 2014). However,
Finco et al. (2017) estimated relatively low
decreases in biomass production by 4-5 % in
Alpine larch forest caused by current [O3]
when compared to the pre-industrial  era,
even if the total ozone fluxes were gener-
ally high, up to 30-40 nmol m -2 s-1. This was
due to  relatively  low  portion of  stomatal
uptake  by  the  larch  forest  representing
only 15-16% of total O3 deposition flux into
the  forest.  Similar  growth  reductions  in
stem increment of 6.6% and photosynthe-
tic carbon uptake of 4-8% were observed in
Switzerland (Braun et al. 2014) and eastern
parts of USA (Yue & Unger 2014), respec-
tively, due to episodes of high tropospheric
[O3].

Norway spruce, one of the most common
and important timber trees in Europe, was
found  to  be an  O3 sensitive  tree  species,
showing  substantial  reductions  in  photo-
synthetic  carbon  uptake  under  elevated
[O3] (Wallin et al. 2002, Zapletal et al. 2011).
For example,  Subramanian et al. (2015) re-
ported a decrease in carbon sequestration
of spruce forest in Sweden by 4.3-15.5% un-
der ambient ozone conditions as compared
to the preindustrial [O3]. This is consistent
with  our  estimate  of  NEP  reduction  in
mountain spruce forest  of  the temperate
zone.

It should be noted, however, that there is
a contrasting evidence of long-term O3 ef-
fects  detected  after  several  growing sea-
sons.  Since  several  research  groups  re-
ported no negative effect of elevated [O3]
on  carbon  assimilation  in  forest  ecosys-
tems (Zak et al. 2011, Wang et al. 2016), we
can hypothesize large acclimation capacity
of  tree  species,  including  morphological
(Riikonen et al. 2004,  2010) as well as bio-
chemical adjustments (reviewed by  Heath
2008).  Recent  studies  have,  however,
shown  that  long-term  exposure  to  ele-
vated [O3]  may substantially  modulate an
acclimation of trees to other environmen-
tal factors like elevated temperature (Kivi-
mäenpää et al. 2017) and/or elevated atmo-
spheric CO2 concentration (Riikonen et al.
2010,  Zak  et  al.  2011).  The  carbon  sink
strength  in  old  forests  could  be  thus  re-
duced substantially  or even disappear un-
der the conditions of high [O3],  accelerat-
ing the impact of  atmospheric  CO2 on cli-
mate change. Precise estimates of FsO3 are
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Predicting ozone effects

thus  needed  for  future  predictions  of
ozone impacts on NEP of terrestrial ecosys-
tems.

Conclusions
We have found that stomatal ozone flux

model tracks diurnal changes in NEP more
precisely that ozone concentration model
does. NEP simulated at low, pre-industrial
FsO3 (0.5 nmol m-2 s-1) was higher by 24.8%
as  compared  to  NEP  assessed  at  current
FsO3 (8.32 nmol m-2 s-1). Further increase in
FsO3 (up to 17 nmol m-2 s-1) may lead to sub-
sequent reduction in NEP by 14.1% in aver-
age  as  compared  to  current  NEP  values,
but this reduction may change during the
growing season. These results are in agree-
ments with observations in other European
coniferous forests. Relatively high site-spe-
cific  variability  in [O3]  effect of  photosyn-
thetic  carbon  uptake  is  likely  caused  by
species-specific  sensitivity  of  stomata  to
environmental drivers. Also a co-occurren-
ce of  other  stress factors,  particularly  ex-
treme temperatures and drought,  leading
to  the  changes  in  stomatal  conductance
and stomatal ozone flux, may influence a fi-
nal response of trees to [O3].
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