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Bayesian geographically weighted regression and its application for local
modeling of relationships between tree variables
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Geographically weighted regression (GWR) has become popular in recent years
to deal with spatial autocorrelation and heterogeneity in forestry and ecologi-
cal data. However, researchers have realized that GWR has some limitations,
such as correlated model coefficients across study areas, strong influence of
outliers, weak data problem, etc. In this study, we applied Bayesian geographi-
cally weighted regression (BGWR) and a robust BGWR (rBGWR) to model the re-
lationship between tree crown and diameter using observed tree data and sim-
ulated data to investigate model fitting and performance in order to overcome
some limitations of GWR. Our results indicated that, for observed tree data,
the rBGWR estimated tree crown more accurate than both BGWR and GWR. For
the simulated data, 74.1% of the estimated slope coefficients by rBGWR and
73.4% of the estimated slope coefficients by BGWR were not significantly dif-
ferent (α = 0.05) from the corresponding simulated slope coefficients. The es-
timation of model coefficients by rBGWR was not sensitive to outliers, but the
coefficient estimation by GWR was strongly affected by those outliers. The ma-
jority of the coefficient estimates by rBGWR and BGWR for weak observations
were not significantly (α =  0.05) different from the simulated coefficients.
Therefore, BGWR (including rBGWR) may be a better alternative to overcome
some limitations of GWR. In addition, both BGWR and rBGWR were more pow-
erful than GWR to detect the spatial areas with non-constant variance or spa-
tial outliers.

Keywords: Spatial Autocorrelation, Spatial Heterogeneity, Robust Regression,
Spatially Varying Coefficients Models

Introduction
Most  tree  or  plant  communities  display

some  degree  of  spatial  structure  in  the
form of geographical  patchiness or gradi-
ents. Trees or plants at close distances in-
teract to each other (e.g., by competition)
more than those farther away (Legendre &
Fortin 1989,  Legendre 1993,  Fortin & Dale
2005). In forestry, young stands commonly
exhibit positive spatial autocorrelation due
to micro-site patchiness, whereas the com-
petition  among  trees  promotes  negative
spatial  autocorrelation  (Reed  &  Burkhart
1985, Fox et al. 2001). In addition, spatial ef-
fects (i.e., spatial autocorrelation and het-
erogeneity)  in  tree  or  plant  communities
may exist at multiple spatial scales and for

many  variables  (Wiens  1989,  Levin  1992,
Ma et al. 2012, Ma & Zhang 2015). Thus, in-
corporating  spatial  effects  into  statistical
data  analysis  and  modeling  requires  cre-
ative  approaches  to  describe  real-world
systems (Green et al. 2005). In the last de-
cade,  researchers  are  increasingly  inter-
ested in understanding the causes and con-
sequences  of  spatial  autocorrelation  and
heterogeneity in ecosystem functions (Lov-
ett et al. 2005).

When spatial autocorrelation and hetero-
geneity  exist  in  forestry  and  ecological
data,  the independence and homogeneity
assumptions of traditional statistical meth-
ods, e.g., ordinary least squares (OLS), may
be violated (Green et  al.  2005).  In recent

years,  different  spatial  models have been
developed  to  deal  with  spatial  effects  in
the relationships between variables. Based
on the spatial scales used in the modeling
process, spatial models can be categorized
into global and local models (Haining 2004,
Schabenberger  &  Gotway  2005,  Lloyd
2006). Global models, such as linear mixed
models and spatial  autoregressive models
(Zhang et al. 2009,  Meng et al.  2009), as-
sume that spatial variation is the same ev-
erywhere.  Thus,  a  single  model  is  devel-
oped using the whole data set and is used
for  the  entire  study  area.  Commonly,  a
global  model  requires  a  device  to  model
spatial  autocorrelation  among  observa-
tions in neighboring locations, through ei-
ther a covariance matrix that can be esti-
mated using a variogram or spatial weight
matrix based on spatial proximity of neigh-
bors (Lu & Zhang 2010,  2012,  2013).  Obvi-
ously, global models do not well represent
spatial variations at any individual location
and may not be effective to deal with spa-
tial heterogeneity.

In  contrast,  local  models,  such  as  geo-
graphically weighted regression (GWR), fit
a regression relationship for each spatial lo-
cation using the neighbors within a given
bandwidth (Fotheringham et  al.  2002).  In
recent years, GWR has been applied in vari-
ous disciplines, including ecology, forestry,
real estate, and healthcare (McMillen 2003,
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Foody 2004,  Zhang & Shi 2004,  Lin & Wen
2011). Local models are more useful to ex-
plore  locational  spatial  variation  (hetero-
geneity) in the relationships between vari-
ables. In forestry and ecological studies, lo-
cal models can be a useful tool for evaluat-
ing, testing, and modeling the influence of
micro-site  variation,  competition  status,
growth potential, and management activi-
ties on trees or plants. Further, these local
model coefficients and model fitting statis-
tics  can be readily  displayed using GIS or
graphic packages to explore local “hot” or
“cold” spots across the study area (Zhang
& Shi 2004).

However,  researchers have realized that
GWR has  several  limitations:  (i)  lack  of  a
unifying approach to estimate local coeffi-
cients; (ii) incorrect estimates of dispersion
of model coefficients, as GWR utilizes the
same sample data observations (with  dif-
ferent  spatial  weights)  to  produce  a  se-
quence of parameter estimates for all loca-
tions in the space. Consequently, the esti-
mated  model  coefficients  are  dependent
across spatial locations, and the correct ex-
pression  for  the  variance  of  local  coeffi-
cients  could  be  non-linear;  (iii)  the  influ-
ence of outliers (i.e., unusual data observa-
tions  on Y-axis),  because local  coefficient
estimates can be strongly affected by a sin-
gle outlier; (iv) weak data (i.e., any obser-
vation with insufficient neighbors within its
effective bandwidth) problem, especially if
the “pre-selected” bandwidth is small; and
(v) assumption violation of homogeneous
error  variance  (LeSage  2004,  Wheeler  &
Páez 2010).

To  overcome  the  limitations  of  GWR,  a
Bayesian approach was proposed to  esti-
mate  the  local  regression  coefficients,
namely  Bayesian  geographically  weighted
regression  (BGWR  – LeSage  1997,  2004).
BGWR introduced the concept of parame-
ter  smoothing,  which  polls  the  strength
among  observations.  In  other  words,  pa-
rameter  smoothing  defines  the  relation-
ship  between  the  local  regression  coeffi-
cients  of  a  subject  location and the local
coefficients of other locations in the study
area. Further, a robust BGWR (rBGWR) was
also  introduced to  deal  with  problems in
data such as outliers and weak data (LeSa-
ge 1997, 2004).

However,  BGWR  requires  the  use  of
Gibbs  sampler,  a  Monte Carlo  simulation,
to estimate its parameters. The Gibbs sam-
pler (Gelfand & Smith 1990, Gelfand 2000)
is one of the most frequently used meth-
ods of Markov Chain Monte Carlo (MCMC).
It generates random samples from a (mar-
ginal)  probability  distribution  indirectly,
without the need to calculate the density
itself. By simulating a large enough sample,
the  sample  characteristics  such  as  mean
and variance can be computed to the desir-
able degree of accuracy (Casella & George
1992,  Banerjee  et  al.  2004).  Gelfand  &
Smith  (1990) demonstrated  how  such
methods can be useful for a variety of Bay-
esian inference problems.

To  date,  limited  studies  have  used  the
BGWR methods.  LeSage (2004) compared
GWR  and  BGWR  with  econometric  data.
Furutani (2004) used BGWR to study land
prices  in  Yokohama,  Japan.  Similarly,  Clif-
ton  &  Romero-Barrutieta  (2006) used
BGWR to study the role of geography and
institutions  on  growth  and  development
for a region of the United States. However,
we are  not  aware  of  any  applications  of
BGWR in the fields of ecology or forestry.
The objectives of this study were to: (i) fit a
relationship between tree crown area and
diameter  at  breast  height  (dbh)  for  ob-
served  data  and  simulated  data  using
GWR,  BGWR,  and  rBGWR;  (ii)  compare
model fitting and performance of the three
modeling methods; and (iii) investigate the
usefulness, advantages, and limitations of
BGWR and rBGWR in handling outliers and
weak data problems.

Theoretical background

Geographically weighted regression
A linear regression relationship between

variables can be expressed as (eqn.1):

(1)

where Y is an n × 1 vector of the response
variable,  X is an  n ×  p matrix with a (first)
column of one and (p - 1) explanatory vari-
ables, β is a  p × 1  vector of model coeffi-
cients, and ε is an n × 1 vector of random er-
ror  term  with  i.i.d.  N(0,  σ2I),  where  I de-
notes an n × n identity matrix. Traditionally,
the relationship represented by eqn. 1 is as-
sumed to be universal  or constant across
the geographical study area.

Now suppose that we have a set of loca-
tions si (i = 1, 2, …, n) with geographic coor-
dinates.  The  underlying  model  for  geo-
graphically weighted regression (GWR) can
be expressed as (eqn.2):

(2)

where  Y and  X are  defined  as  in  eqn.  1,
W(si) is an  n ×  n diagonal matrix of spatial
weight, β(si) is a p × 1 vector of model coef-
ficients  associated  with  the  subject  loca-
tion si, and ε(si) is an n × 1 vector of random
error  term  with  i.i.d.  N(0,  σ2I)  associated
with  the  subject  location  si.  The  aim  of
GWR is to obtain non-parametric estimates
of  the  regression  model  for  each  geo-
graphical location  si. This can be achieved
by using neighboring observations near lo-
cation  si as follows: (i) find a point at one
particular location  si; (ii)  compute the dis-
tance-based  spatial  weight  matrix  W(si);
and (iii) estimate the model coefficients us-
ing  weighted  least-squares  regression
(Brunsdon et al. 1996,  Fotheringham et al.
2002 – eqn. 3):

(3)

where  T is the transposed matrix and the
other terms are as defined above. Further,

using  the  analogies  of  local  information
matrix and hat matrix, Fotheringham et al.
(2002) gave  the  following  expression  to
compute  the  asymptotic  variance  of  β(si)
(eqn. 4):

(4)

where H(si) = [X(si)T W(si) X(si)] -1 X(si)T W(si).
Unfortunately, this expression is incorrect
for  variance  of  local  coefficients  (LeSage
2004, Wheeler & Páez 2010).

The spatial weight matrix  W(si) is a func-
tion of  the  distance between the subject
location (si) and neighboring observations
(sj),  and  determines  the  influence  of  the
neighbors on the parameter estimation of
local regression coefficients. Three weight
functions are commonly used to compute
the spatial weight matrix, including Gauss-
ian,  exponential,  and  bi-square  weight
functions (Fotheringham et al.  2002). The
bandwidth of the weight function is either
fixed (i.e.,  Gaussian and exponential  func-
tions) or variable (i.e., bi-square function –
Guo et al. 2008). The “optimal” bandwidth
can be determined using the cross-valida-
tion (CV) method, the Akaike’s information
criterion  (AIC)  or  pre-defined  by  the  re-
searcher (Farber & Páez 2007).

Bayesian geographically weighted 
regression

The  underlying  model  of  Bayesian  geo-
graphically weighted regression (BGWR) is
the same as that of GWR in eqn. 2.  How-
ever, the model error term ε(si) assumes to
follow i.i.d. N (0, σ2V(si)), where V (si) = diag
(vs-i1  ,  vs-i2  , …, vs-in  ) is an n ×  n diagonal ma-
trix. Basically, V(si) represents a set of non-
constant variances across space and needs
to be estimated from the data. BGWR re-
quires the use of  a parameter smoothing
specification, which is a mathematical func-
tion  representing  the  relationship  among
spatially varying coefficients. For example,
a distance smoothing parameter specifica-
tion is as follows (eqn. 5):

where  wsij represents normalized distance-
based spatial weights, i.e., sum of row vec-
tor (wsi1, ...,  wsin) is unity and assumes wsij =
0.  The  stochastic  variation  term  υ(si)  fol-
lows N[0, σ(si)2 δ2 (X(si)T W(si) X(si))-1] . Note
the variance of υ(si) contains a scale factor
δ2 which quantifies the amount of variation
among  the  local  coefficient  vector  β(si).
The role of  this scale factor in estimating
local parameters will be discussed later.

The  parameter  smoothing  function  and
assumption of heterogeneous variance en-
sure  that  BGWR  captures  spatial  hetero-
geneity and autocorrelation. On the other
hand,  these  assumptions  add  complexity
to the modeling process. Thus, a Bayesian
approach is required to estimate the mod-
el  coefficients.  The  likelihood  of  BGWR
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(LeSage 2004) can be represented as (eqn.
6):

(6)

where Y = W(si) Y(si), X̃(si) = W(si) X(si), J(si)
= (wi1  Ip,  ...,  win  Ip)  and  γT =  β(si),  ...,
β(sn). Note that when V(si) = In, and δ = ∞,
both  X̃(si)T X̃(si)/δ2 and  X̃(si)T X̃(si)  J(si)γ/δ2

are zero and the BGWR model is reduced
to the GWR model.

Using eqn. 6 and the distribution of υ(si),
the conditional  distribution of  β̂(si),  given
δ, σ(si), V(si), and γ, is a multivariate normal
and can be expressed as (eqn. 7):

(7)

where  δ,  σ(si) and V(si), are hyper-parame-
ters (i.e., the parameters of prior distribu-
tions), and γ represents the value of other
β̂(si)  for  observations  j≠i.  Geweke  (1993)
proved the existence of the posterior den-
sity and moments of this model.

Choosing a prior distribution or prior in-
formation  for  the  hyper-parameters  is  an
important issue in Bayesian inference, as it
may be sensitive or robust to the choice of
the  prior  distribution  (Congdon  2006).  In
this  study,  the  conditional  prior  distribu-
tions of the BGWR hyper-parameters (i.e.,
δ, σ(si) and V(si)) are as follows:

(1)  The  conditional  prior  distribution  of
scale factor δ (eqn. 8):

(8)

where a and b are the Gamma distribution
parameters. The mean and variance of the
Gamma  distribution  are  a/b and  a/b2,  re-
spectively.  Alternatively,  the  conditional
prior distribution of  δ is  χ2(np),  such that
(eqn. 9):

(9)

Note that the value of δ is very important
for defining the relation of β(̂si) with other
neighboring  β(̂sj),  j≠i.  When  the  inherent
dispersion of the GWR parameters is large
for a given data set, it will require a larger
δ value to fit BGWR (LeSage 2004). A very
small value of δ imposes the constraints on
the variation of parameters β(̂si), and it be-
comes a distance-weighted linear combina-
tion  of  neighboring  β̂(sj).  In  contrast,  a
larger value of δ allows the parameter β(̂si)
to be estimated from the data and less in-
fluenced  by  other  neighboring  β(̂sj).  As  a
result, an informative prior for  δ is chosen

in this study. It can be estimated using an
empirical  Bayes  method  (Carlin  &  Louis
2000).  Once the estimate is obtained, we
can choose a set of values of δ (e.g., multi-
ply by some constants such as 0.1, 0.25 and
0.5) to explore the interaction of the scale
factor with the variation of estimated local
coefficients.

(2)  The  conditional  prior  distribution  of
σ(si) (eqn. 10):

(10)

where  ε(si)  =  Y(si)  –  X̃(si)  β(̂si),  and  m de-
notes  the  number  of  observations  with
non-negligible  weights.  Hence,  the poste-
rior  distribution  of  σ(si)  is  χ2(m).  It  is  a
squared  sum  of  m independent  variables
with standard normal distributions.

(3)  The  conditional  prior  distribution  of
V(si) (eqn. 11):

(11)

where r is a hyper-parameter that controls
the amount of dispersion in the  V(si) esti-
mates across the observations. This type of
prior  has  been  used  previously  (Lindley
1971, Geweke 1993, LeSage 1997). The moti-
vation for assigning this prior to V(si) is that
the  mean  of  prior  equals  unity  and  the
prior variance is 2/r (LeSage 2004). Thus, in-
troduction  of  a  single  hyper-parameter  r
can generate n2 parameter estimates. How-
ever, in order to constrain  V(si) in relation
to  ε(si) and  σ(si), the following conditional
distribution is used to generate the poste-
rior samples of V(si) (eqn. 12):

(12)

which provides greater flexibility to vij (the
jth diagonal  of  V(si)),  depending  on  how
close the prediction for the jth observation
was while calibrating the local parameters
for the ith subject location.

Given the likelihood function and the con-
ditional prior distributions of BGWR hyper-
parameters,  the  posterior  distribution  of
β̂(si)  is simulated using the Gibbs sampler
(Gelfand 2000). As there are a large num-
ber of parameters in each draw (iteration),
two approaches can be adopted to simu-
late the model parameters. In the first ap-
proach,  the parameters are estimated se-
quentially for each observation in each sim-

ulation draw, and it will be computationally
very  expensive.  In  the  second  approach,
the  parameters  are  individually  simulated
across all  draws (iterations) for every ob-
servation. One limitation of this approach
is that there will be no parameter smooth-
ing relationship. However, a robust param-
eter estimation (i.e., insensitive to outliers)
can be implemented by this approach. The
rBGWR uses an independent Student-t lin-
ear model, and the parameter estimation is
powerful enough to handle outliers and to
address  robustness  concerns  in  practical
settings  (Geweke  1993).  In  addition,  this
approach is computationally very efficient.
Hereafter,  this  simplified  Gibbs  sampling
approach  with  robust  parameter  estima-
tion will be referred to as rBGWR.

Data and methods
We briefly discuss the observed data and

simulated  data,  crown  area  regression
model,  model  fitting  process  for  each
method  (GWR,  BGWR,  and  rBGWR),  and
the evaluation of the three methods.

Ontario softwood data
The  observed  data  used  in  this  study

were a subset of the stem map data of a
mature, second growth, uneven-aged soft-
wood stand located near Sault Ste. Marie,
Ontario, Canada (Ek 1969). It was 150 × 200
m in size and had a total of 1698 trees. The
dominant tree species included balsam fir
(Abies balsamea [L.] Mill. – 57.6% in number
of  trees),  black  spruce  (Picea  mariana
[Mill.]  BSP.  – 33.5%),  and  white  spruce
(Picea  glauca [Moench.]  Voss.  – 4.6%).
Other tree species were in smaller percent-
ages  and  included  white  pine  (Pinus
strobus L.), balsam poplar (Populus balsam-
ifera L.), Tamarack (Larix laricina [Du Roi] K.
Koch),  and  white  birch  (Betula  papyrifera
Marsh.).  The  information  on  measure-
ments included tree location (coordinate),
diameter  at  breast  height  (dbh),  total
height,  and crown area (crown) for trees
dbh > 8.9 cm (Zhang et al. 2008, 2009).

Tab. 1 shows the descriptive statistics of
tree dbh and crown, as well as their spatial
autocorrelation (Moran’s I), relative spatial
heterogeneity (SH%), and nearest-neighbor
distance (Zhang et al. 2008, 2009). Fig. 1 il-
lustrates the stem map of trees with circle
size  proportional  to  the  tree  dbh.  Note
that the Ontario softwood data had some
special  features:  (i)  clustered  spatial  pat-
tern of trees; (ii) large variation in tree dbh
(e.g., potential outliers); and (iii) large gaps
between trees in the upper portion of the
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Tab. 1 - Descriptive statistics of observed tree data (Ontario softwood stand). Moran’s
I and SH% were calculated at lag distance of 4.48 m and 2.24 m, respectively.

Variable n Mean SD Min Max Moran’s I SH% Distance
(m)

dbh (cm) 1698 18.68 8.47 11.43 84.07 0.087 91.64 2.2
(0.3-11.0)

Crown area (m2) 1698 7.79 7.80 0.93 90.48 0.115 80.62 -
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plot  (e.g.,  potential  weak  data  observa-
tions).

Regression model
Based on the relationship between tree

dbh and crown in the data, we chose the
following linear regression model (eqn. 13):

(13)

where  crown is  the tree crown area (m2),
dbh is tree diameter at breast height (cm),

β0 and β1 are regression coefficients to be
estimated, ln is the natural logarithm, and
ε is  the model  random error.  The crown-
dbh relationship was used in this study be-
cause crown is considered the “engine” of
a tree, but it is difficult and time consuming
to be measured in field. However, we em-
phasize that we did not intend to develop a
predictive  crown-dbh  model.  Rather,  we
attempted to demonstrate that BGWR is a
flexible  alternative  modeling  approach
which  can  be  used  to  investigate  spatial

heterogeneity in the relationships between
response variable (tree crown) and covari-
ate (dbh).

Simulated data
To objectively verify the performance of

BGWR, a simulated tree data set with geo-
graphic  coordinates,  tree  dbh  and  crown
area,  and  known  local  regression  coeffi-
cients  was  generated  for  each  tree.  The
procedure  of  generating  the  simulated
data is as follows:

(1)  The  AMORPHYS  software  (Valentine
et al. 2000) was used to generate tree loca-
tions with a clustered spatial pattern. The
clustered  spatial  pattern  was  chosen  be-
cause  local  models  such  as  GWR  would
have more advantages over global models
than  random  or  regular  spatial  patterns
(Zhang  et  al.  2009).  Then,  the  values  of
tree dbh were randomly generated from a
two-parameter  Weibull  distribution,  and
other  tree  attributes  such  as  tree  crown
area were calculated using a process-based
stand model (Valentine et al. 2000).

(2) The generated tree data were used to
fit eqn. 13 by GWR 3.0 (Fotheringham et al.
2002)  to  obtain  the  two  local  regression
coefficients (β0 and β1) for each tree / loca-
tion.  These  local  regression  coefficients
were transformed into a unit  scale [0,  1],
and used to calculate the cumulative distri-
bution function.  The purpose of  this  step
was  to  estimate  the  scale-invariant  mea-
sure of association between β0 and β1 using
a bivariate Gaussian copula  (Nelsen 1999,
Wang et al. 2010).

(3)  Given  the  estimated  association  be-
tween  β0 and  β1,  the  bivariate  Gaussian
copula was used to randomly simulate the
two coefficients (β0 and β1) in a unit scale
[0,  1],  and  then  transform  these  coeffi-
cients back to the original scale and assign
the  coefficients  to  the  spatial  locations
generated in step (1).

(4) Create 5 outliers by artificially making
the β1 coefficient very large (e.g., two times
larger). Create scenarios of weak data (any
observation  with  insufficient  neighbors
within its effective bandwidth) by deleting
a few trees at  the locations of  low trees
density.

(5) Given the randomly generated regres-
sion coefficients (β0 and β1)  and tree dbh
generated in step (1), tree crown area was
computed using eqn. 13 for each tree / loca-
tion. Finally, a total of 1230 trees were sim-
ulated  with  geographic  coordinates,  tree
dbh  and  crown,  and  known  local  regres-
sion coefficients for each location.  Tab.  2
provides a summary of the simulated data.
Fig. 2 illustrates the spatial pattern of these
simulated  trees  with  circle  size  propor-
tional to tree dbh.

Model fitting
Three  modeling  methods,  GWR,  BGWR,

and rBGWR, were used to fit the linear rela-
tionship  between  ln(crown)  and  ln(dbh)
(eqn.  13)  for both Ontario softwood data
and simulated data.  The GWR model  was
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Fig. 1 - Map of tree locations for Ontario softwood data. Circles are proportional to
the diameter at breast height of trees.

Tab. 2 - Descriptive statistics of simulated tree data (n=1230).

Variable Mean SD Min Max Moran’s I SH%

DBH (cm) 18.23 9.44 7.43 80.45 0.03 86.40
Crown area (m2) 12.94 7.00 4.61 74.91 0.05 86.90
Intercept β0 0.201 0.143 -0.260 0.580 0.01 87.80
Slope β1 0.807 0.130 0.600 1.233 0.01 92.60
Nearest neighbor distance 1.4 1.26 0.15 6.47 - -

Fig. 2 - Map of tree locations for simulated data. Circles are proportional to the diame-
ter at breast height of trees.
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fitted using GWR 3.0 software (Fothering-
ham et al. 2002). The cross validation (CV)
method was used to compare three spatial
weigh  functions,  i.e.,  Gaussian  (fixed  ker-
nel),  exponential  (fixed  kernel),  and  tri-
cube  functions  (Farber  &  Páez  2007).  In
this  study,  the  same  Gaussian  spatial
weight  function  (fixed  kernel)  and  band-
width (10 m) were used for all three meth-
ods  in  order  to  make  compatible  model
comparison (Fotheringham et al. 2002, Guo
et al. 2008).

The BGWR and rBGWR models were fit-
ted  using  bgwr.m  and  bgwrv.m  Matlab
functions  available  in  the  Econometric
Toolbox  (LeSage  1997).  These  functions
were  modified  to  accommodate  the  op-
tions of thinning for longer MCMC chains
and  calculation  of  deviance.  Both  BGWR
methods require the prior distributions for
the hyper-parameter r (related to V(si)) and
the scale factor  δ2. In this study, three pri-
ors (4, 5 and 6) were chosen for the hyper-
parameter r. For each r, three priors on the
scale factor δ2 were selected for the BGWR
method,  which were 10%,  25% and 50% of
estimated  using  the  empirical  Bayes
method with  the sample data.  The priors
on these scale  factors larger than 50% of
the  diffuse  prior  were  not  included,  be-
cause larger priors reduce the efficacy of
parameter smoothing and result in BGWR
coefficients  similar  to  GWR  coefficients
(LeSage  2004).  Hence,  there  were  nine
BGWR models with three priors of  r com-
bined by three priors of  δ2.  However, the
rBGWR models used only three priors of r.

Posterior distributions of model parame-
ters  for  each  model  were  sampled  using
the Gibbs sampler.  A single long chain of
MCMC was  used  to  generate  samples  of
each coefficient. The convergence of sam-
pled coefficients was diagnosed using the
method  of  Raftery  &  Lewis  (1992) and
other exploratory tools.  The convergence
diagnostic suggested that most of the co-
efficients  estimated  by  BGWR  converged
within 4000 samples after a sufficient burn
in.  However,  those estimated coefficients
with specification of smaller priors on the
scale  factor  required  almost  15,000  sam-
ples to converge at the precision of 0.005
(quartile = 0.025 and probability = 0.95).

Using  the  post  convergence  values  of
model coefficients, the Deviance Informa-
tion  Criterion  (DIC  – Spiegelhalter  et  al.
2002) was calculated for all the models as
an  assessment  measure  of  model  fitting,
such that DIC = D(β) +pD, where D(β) is the
average deviance of the mean of posterior
model coefficients, and pD is the effective
number  of  model  coefficients,  which  de-
scribes  the  complexity  of  the  model  and
serves as a penalization term that corrects
deviance’s propensity toward models with
more parameters. Therefore, DIC is a Bay-
esian  alternative  to  Akaike’s  information
criterion (AIC). A model with a smaller DIC
value  is  desirable  suggesting  improved
model fitting without excessive parameter-
ization. In order to compare against GWR,

one BGWR model  and one rBGWR model
with  the  smallest  DIC  value were  chosen
among all fitted models.

Model evaluation
The  local  coefficients  estimated  by  the

three methods (GWR, BGWR, and rBGWR)
were summarized using descriptive statis-
tics.  For  the  Ontario  softwood  data,  the
two  regression  coefficients  estimated  by
each  method  were  interpolated  using  in-
verse distance weighting method and con-
tour maps of these coefficients were gen-
erated  for  each  method.  Further,  the
model  residuals  from  each  method  were
assessed across a range of the explanatory
variable (dbh).

The  local  regression  coefficients  were
also evaluated for spatial heterogeneity us-
ing  intra-block  variance  (Vintra)  and  inter-
block variance (Vinter – Li & Reynolds 1995,
Garrigues et al. 2006, Zhang et al. 2009) as
defined below (eqn. 14, eqn. 15):

(14)

(15)

where  B is the number of blocks,  ni is the
number of observations in the ith block, and
βij,  β̄i, and β̄ are the estimated local coeffi-
cients for jth observation in the ith block, the
mean value of  local  coefficients  in  the  ith

block, and the overall mean of coefficients
of the whole plot, respectively. In general,
Vinter indicates the regional spatial  variabil-
ity,  while  Vintra quantifies  the  local  spatial
variability (Zhang et al. 2009). These mea-
sures  of  spatial  heterogeneity  were com-
pared among the three modeling methods
for the Ontario softwood data.

For the simulated data,  the “true” local
coefficients  of  each  observation  were
known.  Hence,  the  95%  of  credible  limits
for  each  coefficient  estimated  by  BGWR
and rBGWR were compared with the corre-
sponding known coefficients for each loca-
tion. If the 95% credible limits of the poste-
rior samples of a coefficient estimated for

a  particular  location  included  the  known
coefficient,  the  coefficient  estimated  by
the method for the location was declared
to be unbiased.  The percentages of  unbi-
ased intercept, slope, and both (intercept
and slope) coefficients for all locations by
BGWR and rBGWR were calculated.  How-
ever,  this  assessment  was  not  used  for
GWR because the estimation of variance of
local  coefficients  was  incorrect  (LeSage
2004,  Wheeler & Páez 2010). Similarly, the
estimation bias (defined as simulated–esti-
mated) was computed for the two local co-
efficients as well as the response variable
[ln(crown)]  for  each  location  and  each
modeling method.

Model fitting and performance were eval-
uated for special cases such as outliers and
weak  data  (any  observation  with  insuffi-
cient  neighbors  within  its  effective  band-
width) by comparing the estimated coeffi-
cients  and predicted  crown  area  by  each
modeling  method.  For  the  Ontario  soft-
wood data,  the comparison was  only  for
weak observations (no obvious outliers in
the  data),  while  for  simulated  data,  the
modeling  fitting  and  performance  were
evaluated for  both outliers  and weak ob-
servations in terms of the 95% credible lim-
its interval of the corresponding BGWR and
rBGWR  coefficients,  and  the  estimation
bias of model coefficients and tree crown
area.

Results

Ontario softwood data

Model fitting
The  identification  of  the  “best”  BGWR

and rBGWR models for different priors of
the hyper-parameters r and δ2 represented
the first  step of  this  study.  Tab.  3 shows
the  model  fitting  statistics  of  the  nine
BGWR  models  (with  the  combination  of
three priors of r (4, 5, and 6) and three pri-
ors of δ2 (10%, 25% and 50% of the estimated
δ̂2 by the empirical Bayes method from the
data), as well as the three rBGWR models
(for three priors of r 4, 5, and 6). The model
deviances D(β), which measured model fit-
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Tab. 3 - Model fitting statistics of nine BGWR models and three rBGWR models for the
Ontario softwood data.

Method Model Prior Mean
of r

Scale Factor
δ2 (%)

DIC D(β) pD

BGWR 1 4 10 4183.1 893.9 3289.2
2 4 25 4149.6 899.7 3249.9
3 4 50 4115.8 904.0 3211.8
4 5 10 3891.4 1039.6 2851.8
5 5 25 3852.6 1042.2 2810.3
6 5 50 3826.7 1044.2 2782.5
7 6 10 4516.4 1160.0 3356.4
8 6 25 4500.0 1160.3 3339.7
9 6 50 3751.1 1161.1 2590.1

rBGWR 1 4 - 4620.2 1279.2 3341.1
2 5 - 4193.0 1307.0 2886.0
3 6 - 5273.4 1323.7 3949.7
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ting, were very similar across the three pri-
ors  of  scale  factors  δ2 within  a  particular
prior of  r. However, the model complexity
(pD) decreased as the prior of scale factor
δ2 increased. Thus, the smallest DIC values
were  observed  for  the  BGWR  models  at
the scale factor  δ2 = 50% across the three
priors of r. This finding implies that the ob-
served  tree  data  favored  a  larger  disper-
sion  of  local  regression  coefficients,  and
consequently  it  indicates  the  evidence  of
spatial heterogeneity in the sample data.

Interestingly, the BGWR and rBGWR mod-
els had consistently smaller DIC values for
r = 5, which was consistent with the finding
previously  reported  by  LeSage  (2004).
Therefore, the BGWR models with r = 5 and
δ2 = 50% and the rBGWR models with r  = 5
had  the  smallest  DIC  value,  which  were
chosen to compare with the GWR model.
While the model fitting statistics similar to
D(β) and pD were also available for GWR,
these values were not directly comparable
(Waller et al. 2007). Thus, they were not re-
ported for GWR. The coefficient of deter-
mination for the GWR model was 0.7824.

Tab. 4 compares the local regression co-
efficients estimated by GWR with the pos-
terior means of local coefficients estimated
by BGWR and rBGWR. It appears that the
three  modeling  methods  produced  very
similar  mean  and  median  values  for  the
two coefficients (β0 and β1). But the rBGWR
model yielded the largest variation for the
two coefficients (the largest standard devi-
ations and ranges), followed by the BGWR

model,  while  the GWR  had  much  smaller
variation for the two coefficients (Tab. 4).
The  distributions  of  the  intercept  coeffi-
cient (β0) were positively skewed and the
distributions  of  the  slope  coefficient  (β1)
were  negatively  skewed.  Both  were  lep-
tokurtic (kurtosis > 4.8) for the three mod-
eling methods.

Model prediction
Fig.  3 illustrates  the  average  prediction

errors  [=  observed  ln(crown)  -  predicted
ln(crown)] from the three modeling meth-
ods  across  a  range  of  tree  size  (dbh)
classes.  It  is  clear  that  rBGWR  produced
the  most  accurate  prediction  for  the  re-
sponse  variable,  followed  by  BGWR  and
GWR. On the other hand, the trend in pre-
diction  errors  was  similar  for  the  three
modeling methods across tree sizes (dbh).
All yielded larger prediction errors for the
dbh classes from 18 to 27 cm.

Assessment of coefficient heterogeneity
The  two  local  regression  coefficients

were  used  to  generate  contour  maps
across the study area for the three model-
ing methods (Fig.  4).  In general,  the con-
tour maps show that GWR produced more
“hot”  or  “cold”  spots  of  the  two coeffi-
cients  estimated  than  those  obtained  by
BGWR and rBGWR. The spatial pattern and
trend of the two coefficients were similar
between BGWR and rBGWR.

Fig. 5 shows the intra-block Vintra (eqn. 14)
and inter-block  Vinter (eqn. 15) variances of

the two coefficients  (β0 and β1)  from the
three modeling methods.  In general,  Vinter

indicates  the  regional  spatial  variability,
while  Vintra quantifies the local spatial  vari-
ability. When the block size increases,  Vintra

increases  and  Vinter decreases.  Fig.  5 indi-
cates the three modeling methods yielded
similar inter-block variances (regional  spa-
tial  variability)  for  the  two  coefficients
across  different  block  sizes.  In  contrast,
rBGWR produces the largest localized spa-
tial variability for both coefficients (i.e., the
largest  Vintra),  followed  by  BGWR,  while
GWR had the smallest Vintra for both coeffi-
cients, implying that the two regression co-
efficients were more similar within blocks
(probably  appeared  as  “hot”  or  “cold”
spots in Fig. 4).

Simulated data

Model fitting
Tab.  5 shows the model  fitting statistics

and the range of the heteroscedastic vari-
ance V(si) by BGWR (with r = 4, 5 and 6, and
δ2 = 50% only) and rBGWR (with r = 4, 5 and
6). It seems that for BGWR increasing the
prior  of  r increased  the  model  deviance
D(β),  but  the  model  complexity  (pD)  de-
creased. In the case of rBGWR, as the prior
mean for  r increased, the model deviance
increased,  but  the  model  complexity  re-
mained  flat.  However,  the  DIC  indicated
both BGWR and rBGWR fitted the data bet-
ter with smaller prior of r. Because the sim-
ulated  data  had  outliers,  the  choice  of
smaller mean prior on  r allowed for larger
variation  in  V(si)  and  consequently  im-
proved  the  model  fit  (Geweke  1993,
LeSage 1997).

Similar to the results obtained for the ob-
served  data,  the  posterior  mean  of  V(si)
was sensitive to the priors of r for rBGWR,
but  not  so  sensitive  for  BGWR  (Tab.  5).
Based  on the  model  fitting  statistics,  the
BGWR and rBGWR models with r = 4 were
chosen  to  compare  with  GWR.  As  men-
tioned earlier, the DIC value was not calcu-
lated for GWR. However, the coefficient of
determination of the GWR model was 0.75
for  fitting  the  simulated data.  It  was  not
surprising that  the coefficient of  determi-
nations of  GWR were very similar  for the
observed and simulated data since the two
datasets  had  similar  descriptive  statistics
(see  Tab. 1 and  Tab. 2) and features (e.g.,
cluster pattern, large variation in dbh). The
coefficient  of  determination  of  GWR  for
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Tab. 4 - Summary of local regression coefficients by the three modeling methods (Ontario softwood data).

Coefficient Method n Mean Median SD Skewness Kurtosis Min Max

Intercept β0 GWR 1698 -2.258 -2.293 1.245 0.541 4.845 -6.087 3.672

BGWR 1698 -2.250 -2.225 1.407 0.231 4.877 -8.395 5.098

rBGWR 1698 -2.242 -2.212 1.480 0.227 4.942 -8.665 5.384

Slope β1 GWR 1698 1.426 1.440 0.424 -0.596 4.845 -0.736 2.774

BGWR 1698 1.428 1.425 0.482 -0.252 4.877 -1.113 3.485

rBGWR 1698 1.426 1.421 0.507 -0.255 4.942 -1.216 3.576

Fig. 3 - Average model prediction errors by GWR, BGWR, and rBGWR (Ontario soft-
wood data).

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry



Bayesian geographically weighted regression and its application

iForest 11: 542-552 548

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ryFig. 4 - Contour
maps of local

regression coeffi-
cients. (a) GWR –

β0; (b) BGWR – β0;
(c) rBGWR – β0; (d)

GWR – β1; (e)
BGWR – β1; and (f)

rBGWR – β1.

Fig. 5 - Intra-block variances (Vintra) and
inter-block variances (Vinter) of local regres-
sion coefficients from the three modeling

methods. (a) Intra-block – β0; (b) Inter-
block – β0; (c) Intra-block – β1; (d) Inter-

block – β1.



Subedi N et al. - iForest 11: 542-552

simulated  data  (0.75)  was  slightly  lower
than that for observed data (0.78) because
simulated data have more outliers than ob-
served data.

A summary of descriptive statistics on the
local  regression coefficients  estimated by
the three modeling methods are given in
Tab. 6, along with the summary for the sim-
ulated  “true  or  known”  coefficients  for
each location. It appears that the posterior
mean and median of the slope coefficient
(β1) estimated by the three modeling meth-
ods  are  very  similar  from  each  other,  as

well  as similar to the “known β1”. On the
other  hand,  the  posterior  mean  and  me-
dian of the intercept coefficient (β0) were
larger  than  the  “known  β0”.  In  addition,
the estimated two local coefficients by the
three modeling methods had much larger
standard  deviations  and  ranges  than  the
“known”  simulated  coefficients  (Tab.  6).
The reasons were that the simulated “true
or  known”  coefficients  were  individually
generated using the bivariate Gaussian co-
pulas with a given measure of association
between  the  two  coefficients  β0 and  β1,

while  the  local  coefficients  estimated  by
the  three  modeling  methods were based
on the response variable ln(crown) and ex-
planatory variable ln(dbh) of the neighbor-
ing trees for each subject location. Hence,
larger variances in the estimated local coef-
ficients  by  the  three  modeling  methods
were not surprising.

Accuracy and bias in estimates of local 
coefficients

The 95% credible limits of each model co-
efficient for both BGWR and rBGWR were
used to assess the accuracy of estimates of
the  local  model  coefficients.  If  the  95%
credible limit of a coefficient for a particu-
lar  location  included  the  “known”  simu-
lated coefficient, the coefficient estimated
by that  method for that location was de-
clared to be unbiased. The results indicated
that, out of 1230 comparisons, 853 (69.3%)
of β0 and 903 (73.4%) of β1 by BGWR, and
864 (70.2%) of β0 and 912 (74.1%) of  β1 by
rBGWR, respectively, were unbiased. When
the two coefficients were compared simul-
taneously,  the  rBGWR  method  (839  or
68.2%) was slightly better than the BGWR
method (826 or 67.2%).

Sensitivity to outliers
To  assess  the  sensitivity  of  GWR  and

rBGWR to outliers in the data, two outliers
(Tree ID 141 and 541) were selected to com-
pare  the  local  coefficients  by  the  two
methods.  Fig.  6 shows the scatterplot  of
ln(crown) and ln(dbh),  including all  obser-
vations within the given bandwidth. The re-
gression  lines  of  GWR  and  rBGWR  were
generated  using  coefficients  of  these
methods. It was clear that the rBGWR coef-
ficients were indeed “robust” to the out-
lier,  while  the  GWR  coefficients  were
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Tab. 5 - Model fitting statistics for BGWR and rBGWR to the simulated data. BGWR models were fitted with scale factor = 50%.

Method Model
Prior Mean

of r DIC D(β) pD
V(si)

Min Max STD

BGWR 1 4 1567.24 632.04 935.21 0.9949 1.0212 0.0022

2 5 1587.61 699.24 888.36 0.9957 1.0204 0.0019

3 6 1651.40 750.07 875.07 0.9964 1.0196 0.0017

rBGWR 4 4 1550.99 746.42 804.57 1.0400 30.8000 0.8891

5 5 1568.63 764.23 804.40 1.0300 14.7800 0.4192

6 6 1583.89 776.21 807.68 1.0000 8.3100 0.2276

Tab. 6 - Summary of local regression coefficients from GWR, BGWR and rBGWR methods for the simulated data. Q1, Q3, P2.5 and
P97.5 are lower quartile, upper quartile, 2.5th percentile, and 97.5th percentile, respectively. (SD): standard deviation.

Coefficient Method n Mean Median Q1 Q3 P2.5 P97.5 Min Max SD

Intercept β0 Simulated 1230 0.201 0.198 0.096 0.312 -0.08 0.478 -0.260 0.58 0.143

GWR 1230 0.231 0.265 -0.124 0.685 -1.526 1.683 -7.656 4.801 0.917

BGWR 1230 0.300 0.302 -0.131 0.788 -1.436 2.002 -7.702 3.303 0.847

rBGWR 1230 0.298 0.302 -0.16 0.812 -1.456 2.035 -7.805 3.462 0.87

Slope β1 Simulated 1230 0.811 0.800 0.696 0.903 0.610 1.079 0.600 2.248 0.154

GWR 1230 0.797 0.781 0.622 0.939 0.278 1.418 -0.448 3.613 0.334

BGWR 1230 0.766 0.765 0.583 0.941 0.158 1.401 -0.349 3.272 0.313

rBGWR 1230 0.766 0.764 0.576 0.948 0.143 1.423 -0.430 3.304 0.322
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Fig. 6 - The outlier and neighboring observations within the bandwidth. The two re-
gression lines of GWR and rBGWR were generated using the estimated slope and in-
tercept  coefficients.  The  response variable  (crown area)  and  explanatory  variable
(dbh) are weighted by proximity to outlier observations and expressed in logarithmic
scale.
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strongly affected by the outlier that pulled
the regression line of GWR up and resulted
in smaller slope coefficient and larger and
negative  intercept  coefficient.  This  result
was expected as GWR uses weighted least
square method with constant variance to
estimate the local coefficients. In contrast,
the  rBGWR  method  assumes  heteroge-
neous variances  and gave  larger  variance
to  the  outlier.  In  addition,  rBGWR  used
W(si)/V(si) as the spatial weight for estimat-
ing the coefficients.  For  example,  rBGWR
estimates  V(si)  were  6.87  for  Tree  ID  141
and 7.68 for Tree ID 541, respectively. Due
to the lager variances, the spatial weights
of the outliers were diminished heavily to
0.145 for Tree ID 141  and 0.13 for Tree ID
541, respectively.

Weak data scenario
Tab. 7 showed the simulated coefficients

and  the  GWR  local  coefficients,  and  the
95% credible limits of the two coefficients
by  BGWR  and  rBGWR  for  eight  selected
weak  data  observations.  BGWR  and
rBGWR  produced  unbiased  coefficients
(i.e., the simulated coefficients were within
the 95% credible limits of estimated coeffi-
cients) for five (5) observations among the
eight  (8)  weak  observations  compared.
The rBGWR method produced the smallest
prediction  error  for  these  weak  observa-
tions, followed by BGWR, and GWR (results
not  shown),  implying  that  rBGWR  and
BGWR are more accurate in estimating the
local  coefficients  and  predicting  the  re-
sponse variable than GWR when the weak
data problems exists.

Discussion
In  this  study,  we established  a  relation-

ship between tree crown and dbh for ob-
served  and  simulated  data  using  GWR,
BGWR and rBGWR, and demonstrated the

advantages  of  Bayesian  approach  to  im-
prove the model  fitting  and performance
of GWR. Firstly, BGWR and rBGWR not only
provided better estimation of local regres-
sion coefficients,  but  also correct  estima-
tion of the variances of the coefficients be-
cause  Bayesian  procedures  (e.g.,  Gibbs
sampler) are not affected by the lack of in-
dependence in the sample data. Thus, cor-
rect statistical inference and creditable lim-
its  (or  confidence  intervals)  can  be  com-
puted and used for statistical testing and
model  interpretation.  The average predic-
tion  errors  yielded  by  BGWR  and  rBGWR
were only about 50% of that produced by
GWR across all DBH classes. Secondly, the
estimates  of  local  coefficients  by  rBGWR
were  not  affected  by  potential  outliers,
while these estimates by GWR were “con-
taminated” by the outliers (e.g., producing
smaller slope and larger and negative inter-
cept).  It  is  not  uncommon  that  forestry
and/or ecological data have potential out-
liers or unusual observations. If the coeffi-
cient estimates of a model are sensitive to
the outliers,  it could have serious implica-
tion for interpreting the meaning of the co-
efficients as well as the regression relation-
ships  between  variables.  BGWR  and
rBGWR  can  automatically  detect  and
down-weight the outliers’ influence in the
parameter  estimation  processes.  Further-
more, when the spatial pattern of trees or
plants is clustered, there are good chances
that the number of trees could be sparse in
some  locations,  resulting  in  very  small
number of effective observations that can
be used to estimate the model parameters
(i.e.,  the weak data problem).  BGWR and
rBGWR are able to produce unbiased esti-
mation on model  parameters  and  predic-
tion  by  incorporating  prior  information,
such as expert  opinion or existing knowl-
edge, to impose restrictions on the spatial

nature  of  parameter  variation  (LeSage
2004).  According  to  our  results,  rBGWR
produced the smallest  prediction error  in
weak  data  scenario,  followed  by  BGWR
and GWR. When large spatial data sets are
involved in data analysis and modeling, het-
erogeneous variance may be a  serious  is-
sue  for  model  parameter  estimation.
BGWR combines the distance-based spatial
weight  matrix,  non-constant  variance  in
model error term and any prior information
into  a  parameter  smoothing  specification
as  a  unified  parameter  estimation  ap-
proach to overcome the limitations of GWR
(LeSage 2004, Wheeler & Páez 2010).

However, the BGWR methods need to be
used with caution. Given their nature, the
local  coefficients  estimated by the BGWR
methods may not be used to make predic-
tion  outside  the  study  area.  Attention
should be given to assess potential model
misspecification,  because  the  spatial  het-
erogeneities of  the relationships between
variables  might have been produced as  a
result  of  model  misspecification  (Cressie
1993,  Fotheringham  et  al.  2002).  The  as-
sessment  of  residuals  may  be  useful  for
identifying  model  misspecification  (Zhang
& Gove 2005).

One of  the challenges on modeling spa-
tial effects (i.e., spatial autocorrelation and
heterogeneity) is to identify an appropriate
spatial scale (Fortin & Dale 2005). Changes
in the bandwidth or number of neighbors
will result in change of support (Gotway &
Young  2002),  and  consequently  will  pro-
duce different model fitting and parameter
estimates  (Guo et al.  2008).  Larger band-
width  will  delineate  a  broader  region  as
neighborhood and will smooth the spatial
heterogeneity  rather  too  much,  while
smaller  bandwidth  will  define  a  limited
area as neighborhood and will produce too
“spiky” spatial heterogeneity (Wiens 1989,
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Tab. 7 - Simulated and geographically weighted regression (GWR) estimated coefficients, and Bayesian geographically weighted
regression (BGWR) and robust BGWR (rBGWR) estimated 95% credible limits of coefficients for weak observations in simulated
data. (‡): indicates the 95% of credible limits of BGWR and rBGWR coefficients that do not contain simulated coefficients.

Coefficients Tree ID
Location

Simulated GWR
BGWR rBGWR

Easting Northing 95% Credible limits 95% Credible limits

Intercept 133 75.1 15.5 -0.023 -0.392 -0.661 ‡ -0.094 ‡ -0.553 ‡ -0.179 ‡

174 37.5 21.9 0.014 1.556 -0.544 2.607 -0.438 2.583
265 59.9 31.8 0.080 -0.708 -6.598 5.564 -4.230 3.138

620 32.7 74.7 0.020 -0.880 -2.913 1.048 -2.623 0.619
649 85.2 76.6 0.340 -0.040 -0.189 ‡ 0.132 ‡ -0.190 ‡ 0.130 ‡

924 142.6 23.1 0.135 -0.120 -1.103 0.871 -0.918 0.757
925 137.5 21.9 0.399 -1.681 -4.007 ‡ -0.286 ‡ -4.034 ‡ -0.484 ‡

1132 132.7 74.7 0.119 0.130 -0.802 0.791 -0.738 0.679

Slope 133 75.1 15.5 0.925 1.045 0.945 ‡ 1.136 ‡ 0.974 ‡ 1.096 ‡

174 37.5 21.9 0.971 0.341 -0.082 1.191 -0.070 1.153
265 59.9 31.8 0.951 1.235 -1.083 3.409 -0.174 2.543

620 32.7 74.7 1.034 1.301 0.653 1.995 0.827 1.903
649 85.2 76.6 0.700 0.864 0.793 ‡ 0.929 ‡ 0.792 ‡ 0.930 ‡

924 142.6 23.1 0.853 0.941 0.584 1.313 0.620 1.248
925 137.5 21.9 0.649 1.496 0.931 ‡ 2.433 ‡ 1.008 ‡ 2.444 ‡

1132 132.7 74.7 0.837 0.824 0.601 1.140 0.650 1.119
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Bailey  &  Gatrell  1995).  For  the  choice  of
scale (in this study bandwidth and number
of neighbors), Wagner & Fortin (2005) sug-
gested that the scale of analysis needs to
be determined in an ecologically meaning-
ful and methodologically sound way.

Another challenge to the BGWR methods
is  related to the convergence of  parame-
ters.  In  this  study,  longer  MCMC  chains
were used to sample the posterior distribu-
tions of  local  coefficients. While sampling
posterior  of  coefficients  for  nine  BGWR
models (with a combination of  the priors
on variance and scale factor) and for three
rBGWR models (with three priors on vari-
ance), the slope and intercept coefficients
estimated  by  these  models  converged  at
the  desired  level  of  precision  (quartile  =
0.025, precision = 0.005 and probability  =
0.95) for most of the observations within
the 4,000 runs after the few thousands ini-
tial burn-in and storing one sample out of
10  samples.  However,  for  a  few observa-
tions,  those  that  fall  at  the  edge  of  the
study  area  required  almost  15,000  itera-
tions  (at  the  maximum  for  the  BGWR
method with  prior  on scale  factor  at  the
smallest  level)  to  converge.  The  assess-
ment of  histogram of coefficients and its
movement  across  iterations  also  sug-
gested  the  desirability  of  longer  runs  for
the latter observations. One of the reasons
for the convergence problem may be the
correlation between the parameters within
the parameter set  (Congdon 2006).  How-
ever, the autocorrelation among the poste-
rior sample of coefficients can be reduced
by  thinning,  e.g.,  keeping  one  coefficient
out of 10 sampled coefficients. In contrast,
the BGWR method posterior sample of co-
efficients with large (the largest level) prior
on  scale  factor  converged  more  quickly
than those with small  (the smallest level)
prior  on  scale  factor.  In  the  case  of  the
rBGWR method, which samples all the pos-
terior samples of coefficients for an obser-
vation before moving to the next observa-
tion, this method took less time to run. Be-
sides  this,  the  computation  time  was  di-
rectly  related  to  the  precision  level  re-
quired for parameter convergence; e.g., for
smaller  precision  (quartile  =  0.025,  preci-
sion = 0.01 and probability = 0.95), the esti-
mates of coefficients by rBGWR and BGWR
converged within a few thousands of itera-
tions after sufficient burn-in.

Despite these limitations, BGWR methods
have  been  recommended  as  an  effective
tool for investigating spatial heterogeneity
of covariate effects across a study area. Fu-
ture studies on developing an optimization
method as  a  function of  both bandwidth
and covariates are recommended. The cur-
rent  approach of  bandwidth optimization
(e.g., the CV method) optimizes only band-
width for a given set of covariates. A better
method  that  optimizes  a  combination  of
covariates (similar to forward or backward
selection in regression) and bandwidth si-
multaneously  is  more  desirable.  In  addi-
tion, a window-driven software for param-

eter  estimation  by  the  BGWR  methods
would certainly be an asset for wider adap-
tations of these Bayesian methods.

Conclusion
The  relationship  between  tree  crown

area  and  diameter  at  breast  height  was
modeled  using  GWR,  BGWR,  and  rBGWR
models. Both observed and simulated tree
data were used to compare model fitting
and  performance.  For  the  observed  On-
tario  softwood  stand,  BGWR  and  rBGWR
produced  more  accurate  parameter  esti-
mates  and  better  model  prediction  than
GWR.  Further,  rBGWR  produced  the
largest localized spatial variability for both
coefficients,  followed  by  BGWR,  while
GWR had the smallest localized spatial vari-
ability for both coefficients. Thus, the con-
tour  maps of  local  regression coefficients
show more “hot”  or  “cold”  spots  of  the
two  coefficients  estimated  by  GWR  than
those obtained by BGWR and rBGWR.

For the simulated data, the percentage of
the unbiased parameter estimation for the
two  local  coefficients  by  rBGWR  was
slightly higher than those by BGWR. How-
ever,  the  credible  limits  cannot  be  com-
puted for GWR due to the lack of an accu-
rate  expression  of  the  variance  of  the
model coefficients in GWR. Further, the co-
efficients  estimates  using  the  rBGWR
method  were  not  affected  by  outliers,
while these estimates by GWR were “con-
taminated” by the outliers, resulting in er-
roneous parameter estimates. Similarly, for
the weak data, the majority of the coeffi-
cients estimated by the rBGWR and BGWR
methods were not different from the simu-
lated  “known”  coefficients.  Therefore,
BGWR and rBGWR are better alternatives
to  overcome the  limitations  of  GWR  and
are more powerful than GWR to detect the
spatial areas with non-constant variance or
spatial outliers.
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