Canopy Chamber: a useful tool to monitor the CO₂ exchange dynamics of shrubland

Gabriele Guidolotti (1-2), Giovanbattista De Dato (1-3), Dario Liberati (1), Paolo De Angelis (1-4)

A transient state canopy-chamber was developed to monitor CO₂ exchange of shrubland ecosystems. The chamber covered 0.64 m² and it was modular with a variable height. Several tests were carried out to check the potential errors in the flux estimates due to leakages and the environment modifications during the measurements inside the chamber. The laboratory leakages test showed an error below 1% of the flux; the temperature increases inside the chamber were below 1.3 °C at different light intensity and small pressure changes. The radial blowers inside the chamber created different wind speed at different chamber height, with faster speed at the top of the chamber and the minimum wind speed that was recorded at soil level, preventing detectable effects on soil CO₂ emission rates. Moreover, the chamber was tested for two years in a semi-arid Mediterranean garrigue, identifying a strong seasonality of CO₂ fluxes with the highest rates during spring and lowest rates recorded during the hot dry non-vegetative summer.

Keywords: Canopy Chamber, CO₂ fluxes, Cistus monspeliensis, Shrubland, Semiarid Ecosystems, Mediterranean Garrigue

Introduction

In recent years, the quantification of ecosystem CO₂ fluxes has received increased attention by the scientific community, both at broader scale as well as at the plant-environment scale. In large areas with homogeneous topography and soil cover, micro-meteorological techniques, such as eddy covariance (Baldocchi et al. 1988), can measure ecosystem CO₂ fluxes without altering canopy environment (Foken et al. 2012). On the other hand, for heterogeneous multi-specific community like ecolonal and transitional areas, plot size experiments, or forest understory vegetation the canopy chamber technique can be a suitable alternative that provides reliable data (Steduto et al. 2002, Schaaf et al. 2005, Burkart et al. 2007).

Canopy chamber systems can be differentiated into “steady state” (open systems) and “non-steady state” (closed systems), according to the recirculation of the air inside the chamber (Livingston & Hutchinson 1995). In the “steady state” type, an external airflow passes through the chamber and the fluxes are calculated on the base of the differential CO₂ concentration of the incoming and outgoing air. In the “non-steady state” type, the fluxes are calculated on the basis of the CO₂ concentration changes in the air passing inside the chamber in a closed loop. In both systems, the measurement of CO₂ is repeated during short time intervals (seconds).

Enclosing a portion of an ecosystem inside a chamber produces several artifacts, caused by the chamber characteristics and deployment (chamber effect). The chamber walls affect light environment, air temperature and humidity, as well the CO₂ concentration inside the chamber. Although transparent materials are used, chamber walls absorb, reflect and therefore reduce the photosynthetically active radiation (PAR, 400-700 nm) reaching the ecosystem (Steduto et al. 2002), decreasing the photosynthetic rates of the plant community. The greenhouse effect produced by the walls and the consequent increase in air temperature and relative humidity (Leedley & Drake 1993) can change both photosynthetic and respiratory processes (Bryer & Bjerkmann 1980, Atkin & Tjoelker 2003). The modified aerodynamic conditions due to fan functioning (Baldocchi et al. 1988) and the pressure variation occurring inside the chamber (Fang & Moncrieff 1998) can alter the soil CO₂ efflux, producing an error in the estimation of the different components of the ecosystem CO₂ fluxes (respiration and photosynthesis). Fans generally increase the CO₂ fluxes from the soil by disturbing the boundary layer above soil surface (Hanson et al. 1993, Pumpanen et al. 2004), while over-pressurization generate a mass transfer into the soil inhibiting the CO₂ efflux (Steduto et al. 2002, Takle et al. 2004). Additionally, the changes in CO₂ and H₂O concentration inside the chamber affect the natural gradient in the soil-atmosphere interface, thus the rates of processes such as photosynthesis, respiration or transpiration are biased from undisturbed rates (Lund et al. 1999, Pérez-Priego et al. 2010). The choice of adequate wall material (Muller et al. 2009) and the use of non-steady state operating for short periods (Steduto et al. 2002), can limit the chamber...
effects due to walls, although longer periods of measurements seems to increase the confidence of the measurements (Pérez-Priego et al. 2015). Furthermore, the application of a venting tube on the chamber wall can help to balance the pressure between the inside and outside of the chamber (Savage & Davidson 2003). On the other hand, other systems based on air and microclimate conditioning have been tested to reduce the chamber effects, but these systems lack portability (Medhurst et al. 2006, Muller et al. 2009).

In the literature, a variety of chambers can be found with different configurations designed to respond to specific requirements such as: different ecosystem types and environments (e.g., croplands, grasslands, orchards, forest understories – Steeduto et al. 2002, Heijmans et al. 2004, Pérez-Priego et al. 2010), needs to modify the climatic conditions inside the chamber (Medhurst et al. 2006), and the accessibility of measurement areas (Muller et al. 2009).

In the context of a long-term climatic manipulation experiment on European shrubland (Beier et al. 2009), the objectives of this work were: (i) to develop a portable canopy chamber system designed to measure the CO₂ fluxes in shrubland ecosystems in remote areas; (ii) to assess the microclimatic modifications produced by the chamber system; and (iii) to test the suitability of the system to quantify the seasonal variation of photosynthetic and respiratory CO₂ fluxes in a Mediterranean, transitional ecosystem (garrigue).

Material and methods

Chamber design

The originally developed chamber was vertically modular and made of a minimum of 3 parts: a soil collar, a base and a lid (see Fig. S1 in Supplementary material). The chamber covers an area of 0.64 m² (0.8 x 0.8 m), and by piling up two or more bases, the height can vary from 0.6 to 1.3 m, depending on the plant height. To avoid leakages, all the junction parts are sealed by foam gaskets (RS 567-965, RS components).

The soil collar guarantees the insertion of the chamber to the ground in order to avoid leakages of gases from the bottom. It is made of a stainless steel frame that can be fixed to the base, and it is equipped of a blade that enters 5 cm into the ground. Along the blade, every 5 cm, there are 5 mm-diameter holes that allow the roots colonization, and partially compensate for the disturbance occurring during soil collar installation. The base consists of an open top and open bottom parallelepiped with 4 transparent 2 mm-thick Lexan polycarbonate (GE plastic, Pittsfield, MS, USA) walls, held together by an aluminium frame. H₂O and CO₂ showed a low permeation through Lexan, which has often been used in recently developed gas exchange chambers for its transparency and low permeability (Bachman et al. 2010). In the lower part of the base two battery-operated radial fan blowers were fixed; the rotational speed of the blowers can be regulated using an external level potentiometer.

The lid is a bottom open parallelepiped made of five transparent walls made of the same materials as the base. Sensors of air temperature, air relative humidity (Hydro-Clip 53 probe; Rotronic, Basserdorf, Switzerland) and photosynthetic photon flux density (PPFD; Apogee Instruments Inc., Logan, UT, USA), together with a high-resolution differential pressure transducer sensor (TEPR 070, Tecno El, Rome, Italy) were mounted on the interior of the lid to monitor the chamber environment during measurements. Additionally, a curled venting tube (6 mm diameter, 70 cm length), passing through one of the wall of the lid, was inserted to equilibrate the pressure between the inside and the outside of the chamber.

The measurements of CO₂ and H₂O concentrations were made by an infrared gas analyzer LI-8100 (LI-COR, Lincoln, NE, USA), connected to the chamber by two polytetrafluoroethylene (PTFE) tubes (2 m in length), while the data originated from the lid sensors were recorded by the Auxiliary Sensor Interface (LI-COR, Lincoln, NE, USA). According to the purpose of this study, only the CO₂ fluxes were calculated as the temporal changes of the concentration in the air passing in a closed loop in the canopy chamber and in the analyzer. The flux computation can change depending on the regression type used to fit the data (typically linear or exponential fitting are used). An underestimation of the flux error is often reported if the linear regression is used (Kutzbach et al. 2007), although this error is dependent on chamber volume to area ratio (chamber height), and experimental tests reported that it becomes negligible for a chamber height higher than 80 cm (Livingston et al. 2005).

In the present study, we used the LI-COR 8100 File Viewer 3.1.0 flux computation. The software performs at the same time both linear and exponential regression, providing the normalized sum of square residuals of fits. Because the linear fit performed better with our measurements, the fluxes presented here were calculated using the scope of the linear regression that fit the variation of CO₂ concentrations inside the chamber during measurement interval after the closure of the chamber. The time duration of the measurement was chosen after preliminary tests, accounting for a duration that would simultaneously allow an adequate CO₂ concentration change as well as the linearity in gas concentration change during the time. We established that 90 seconds was the optimal duration time for the chamber presented here. This duration was similar to the 100 seconds used in another large chamber closed system (Pérez-Priego et al. 2010).

Chamber tests

Several tests were conducted in laboratory condition and outdoor, to evaluate the errors of our chamber system on flux measurements.

Chamber leakages test. This test was carried out in the laboratory to estimate the effect produced on flux calculation caused by the leakages. The empty chamber was installed on an inert surface and pure CO₂ was injected inside the chamber to reach the concentration of 1000 ppm, maximizing the gradient between CO₂ concentration outside and inside the chamber, thus the leakages. The CO₂ concentration inside the chamber was monitored over time by the LI-8100 analyzer.

The flux error associated to the leaks was calculated by the following equations reported by Pérez-Priego et al. (2010) for a large canopy chamber (eqn. 1):

\[
\frac{\partial C_i}{\partial t} = -\alpha(C_i - C_a) + FC\frac{C_i}{V}
\]

where (eqn. 2):

\[
\alpha = \frac{V}{\partial t} \ln \left(\frac{C_i - C_a}{C_i - C_t}\right)
\]

In those equations \(\alpha\) represents the leak coefficient of the chamber (m⁻² s⁻¹), \(C_i\) and \(C_t\) represent the CO₂ concentration (ppm) inside the chamber at time 1 and 2, \(C_i\) is the CO₂ concentration outside the chamber measured discontinuously with the LI-8100 analyzer (ppm), \(V\) is the volume of the chamber (m³), \(\partial t\) is the time (s) and \(FC\) is the net exchange of the ecosystem (μmol CO₂ m⁻² s⁻¹). When in the chamber there is nothing generating a CO₂ flux, \(FC\) is zero, and \(\alpha\) depends only on time and on the concentration gradient between the outside and the inside of the chamber. The flux error \(\varepsilon\) (%) associated to the leaks was estimated according to the eqn. 3:

\[
\varepsilon = \left|\frac{-\alpha(C_i - C_a)}{-\alpha(C_i - C_a) + FC\frac{C_i}{V}}\right| \times \frac{\alpha t}{2V}
\]

Temperature and relative humidity (RH) tests. These tests were based on concurrent measurements of temperature outside and inside the chamber (temperature test) and the measurement of RH increase inside the chamber (RH test) for the 282 field measurements (90 seconds length) carried out at different meteorological conditions. The soil and air temperatures were ranging from about 11 to 30 °C and about 20 and 34 °C, respectively; PPDF from about 600 to 1600 μmol photons m⁻² s⁻¹ and relative soil water content from about 6 to 55%.

Pressure test. The high-resolution pressure transducer installed on the chamber lid was used to monitor the difference of pressure (ΔP) between outside and inside...
the chamber (Pi-Pa where P is the pressure inside the chamber and Pa is the ambient pressure; the positive sign represents an overpressure in the chamber). The check of AP and its analysis was a standard procedure for all the 282 field chamber measurements.

Radiation test. To test the attenuation of solar radiation due to the chamber wall absorbance and reflectance, we monitored the solar radiation inside and outside the chamber in 6 moments along a sunny day in clear sky conditions (2011-06-28), integrating different sun angle. The irradiation measurements were done by a portable spectroradiometer (Field Spec Pro FR, Analytical Spectral Devices, Boulder, CO, USA). The instrument measured the irradiance in the wavelength range 350-2500 nm with a resolution of 1 nm.

Blowers test. To test the effect of rotational speeds on air circulation inside the chamber, we positioned the chamber on a bare sandy soil, where both wind speed inside the chamber (thermo-anemometer 2103-1 Delta-OHM, Italy) and soil CO₂ efflux rate were measured. The wind speed measurements were carried out at 6 different heights above the ground from 2 to 52 cm. In addition, wind speed measurements at 22 cm height were also performed at five different zenith angles (0°, 45°, 90°, 135°, 180°). All measurement were carried out at each level of blower speed potentiometer (6, 8, 10 and 12 Volts). Simultaneously, we tested how the blowers speed affected the rate of CO₂ efflux from bare soil. The results obtained for each level of blower speed (soil CO₂ efflux and wind speed) were tested by ANOVA and Fisher's post-hoc tests.

Chamber comparison. Our Canopy Chamber was compared with the commercial Soil Survey Chamber 8100-103 (LI-COR, Lincoln, Nebraska, NE, USA). The comparison was made in the field on a bare sandy soil. Within the area defined for the canopy chamber measurement (0.64 m²), five PVC collars (Ø 0.2 m, covering about 25% of the area) were inserted at 0.05 m depth for the measurements with the Soil Survey Chamber 8100-103. The comparison was performed by measuring in a short time lag the soil CO₂ efflux on the PVC collars by the Survey Chamber 8100-103 followed by measurement by the Canopy Chamber. In order to avoid any photosynthetic activity, an aluminum cloth darkened the canopy chamber during the measurements. The 5 measurements obtained by the Soil Survey Chamber 8100-103 were averaged for the comparison with the value measured using the chamber developed in this study. The comparison was carried out measuring the fluxes in 8 campaigns carried out in different seasons and environmental condition: soil and air temperature were ranging from about 11 to 30 °C and 20 and 34 °C, respectively; while relative soil water content was ranging from about 6 to 55%.

NEE, TER measurements and GP estimation in a Mediterranean garrigue
The net ecosystem exchange (NEE) and total ecosystem respiration (TER) fluxes were calculated according to the following equation (LI-COR 2010 – eqn. 4):

\[
F_C = \frac{10^V P_0 (1 - W_j/1000) \times C{'}\times R}{RT_0 \times 273.15} \times \Delta t
\]

where \(P_0\) is the initial pressure (kPa), \(W_0\) is the initial concentration of water vapor (mmol mol⁻¹), \(S\) is the surface covered by the chamber (cm²), \(R\) is the universal gas constant (8.314 Pa m³ mol⁻¹ K⁻¹), \(T_0\) is the initial temperature (°C) and \(\Delta C{'}\Delta t\) is the change of CO₂ concentration during the measuring interval (mmol mol⁻¹ s⁻¹).

The net ecosystem exchange was measured by positioning the base over the metallic soil collar, then the radial blowers were switched on, and finally the lid was repositioned over the base. After the NEE measurement, the lid was pulled up to vent the chamber; then, after 2 minutes it was repositioned over the base and the entire chamber was darkened by an aluminum cloth to measure the TER. The gross photosynthesis of the ecosystem (GP) was calculated by subtracting TER from NEE.

In order to test the canopy chamber under variable field conditions, we measured the NEE, TER, GP and the environmental parameters sixteen times throughout the years 2010 and 2011 on a Mediterranean shrubland, located in the northeast of Sardinia (Italy – 40° 37’ N, 8° 10’ E). The soil is rocky and shallow and is covered mostly by a malacophilous drought semi-deciduous species: Cistus monspeliensis L. The height of the plants is lower than 1 m. The climate is Mediterranean with a mean annual temperature of 16.8 °C and a mean annual rainfall of 640 mm. Further information on the site characteristics are reported in De Dato et al. (2008, 2010). Six chamber soil collars, delimiting six areas including at least one Cistus plant, were installed about 2 months prior to the start the measurements, in order to allow root re-colonization after the disturbance. To monitor soil water content and soil temperature two sensors (STD – Decagon Devices, Pullman, WA, USA) were inserted inside each collar at 5 cm depth. The sensors measurements were recorded by an external data-logger (Em50 – Decagon Devices, Pullman, WA, USA).

Result and discussion
Chamber system tests
Chamber leakages
The CO₂ concentration of the empty chamber decreased regularly during the time of the test (in Fig. 1a is showed a part of the test). On average, the leak coefficient \(\alpha\) (Fig. 1b) obtained solving the eqn. 2 was about 8 x 10⁻⁶ m² s⁻¹, while the average flux error \(\varepsilon\) estimated over the standard time of the measurements (90 s) was less than 1% per minute. The \(\varepsilon\) value estimated in this study was constantly in the range of 0.8-1% per minute, similar to the values reported for chamber of comparable volumes by Steduto et al. (2002) and Pérez-Priego et al. (2010), while larger errors are reported for the chamber developed by Held et al. (1990) and Grau (1995).

Temperature and relative humidity tests
The chamber walls altered the energy balance between the chamber and the outside environment, producing a slight increase of temperature inside the chamber (Tab. 1). The temperature increases (ΔT) were a function of PAR level (Fig. 2) and in the measurement interval (90 s), they were always below 1.3 °C (Tab. 1). The recorded ΔT was similar to the one reported from a larger canopy chamber (Bachman et al. 2010, Pérez-Priego et al. 2010) and considerably lower than the 2-4 °C found in many other closed chambers (Grau 1995, Reicosky 1990, Steduto et al. 2002). The lower
values measured in our chamber may be explained by both the short duration of measurements and the lower infrared reflectance properties of the Lexan material constituting the chamber walls. Moreover, we noticed that the aluminum cloth (used for the respiration measurement) slightly reduced the temperature increase (0.2 °C overall average). Relative humidity (RH) increase during the measurements ranged between 4 and 20 % with an average value of 13% (Tab. 2). No condensation inside the chamber was observed, in any of the sampling campaigns. Although limited, the observed increase may affects the evaporation processes (out of the scope of our measurements), but considering the short time of the measurements and a certain delay in the stomata responses (Vico et al. 2011), no major effect on the CO₂ exchanges could be assumed.

Tab. 1 - Average initial measurement temperature (Initial T Air) and relative humidity (Initial RH) values and temperature increase (ΔT Air) and relative humidity increase (ΔRH) values for each field measurement campaign (totally 282 measurements).

<table>
<thead>
<tr>
<th>Date</th>
<th>Initial T Air (°C)</th>
<th>ΔT Air (°C)</th>
<th>Initial RH (%)</th>
<th>ΔRH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-Feb-26</td>
<td>22.38</td>
<td>0.34</td>
<td>62.31</td>
<td>15.42</td>
</tr>
<tr>
<td>2010-Mar-16</td>
<td>22.19</td>
<td>0.67</td>
<td>54.16</td>
<td>19.70</td>
</tr>
<tr>
<td>2010-Apr-28</td>
<td>29.46</td>
<td>0.60</td>
<td>60.26</td>
<td>18.74</td>
</tr>
<tr>
<td>2010-Jun-07</td>
<td>32.45</td>
<td>0.77</td>
<td>47.33</td>
<td>17.53</td>
</tr>
<tr>
<td>2010-Jul-02</td>
<td>33.55</td>
<td>1.27</td>
<td>65.95</td>
<td>15.38</td>
</tr>
<tr>
<td>2010-Jul-28</td>
<td>34.56</td>
<td>0.62</td>
<td>47.63</td>
<td>6.39</td>
</tr>
<tr>
<td>2010-Sept-10</td>
<td>32.02</td>
<td>0.46</td>
<td>46.02</td>
<td>4.93</td>
</tr>
<tr>
<td>2010-Oct-10</td>
<td>34.07</td>
<td>0.31</td>
<td>35.26</td>
<td>9.10</td>
</tr>
<tr>
<td>2010-Nov-06</td>
<td>26.85</td>
<td>0.43</td>
<td>57.15</td>
<td>15.09</td>
</tr>
<tr>
<td>2011-Feb-12</td>
<td>20.50</td>
<td>0.32</td>
<td>58.50</td>
<td>15.20</td>
</tr>
<tr>
<td>2011-Mar-24</td>
<td>27.70</td>
<td>0.72</td>
<td>62.10</td>
<td>12.19</td>
</tr>
<tr>
<td>2011-May-05</td>
<td>30.68</td>
<td>0.38</td>
<td>44.09</td>
<td>17.56</td>
</tr>
<tr>
<td>2011-Jun-15</td>
<td>29.61</td>
<td>0.82</td>
<td>63.73</td>
<td>15.42</td>
</tr>
<tr>
<td>2011-Jul-15</td>
<td>34.78</td>
<td>0.48</td>
<td>39.34</td>
<td>6.41</td>
</tr>
<tr>
<td>2011-Oct-19</td>
<td>28.81</td>
<td>0.68</td>
<td>41.53</td>
<td>4.36</td>
</tr>
<tr>
<td>2011-Nov-13</td>
<td>22.79</td>
<td>0.90</td>
<td>53.11</td>
<td>13.97</td>
</tr>
</tbody>
</table>

Tab. 2 - Imposed blowers voltage (V), soil CO₂ efflux (μmol CO₂ m⁻² s⁻¹) and coefficient of variation (CV %) of the flux computation. Values are means (± standard error) of 5 different measurements carried out on a bare sandy soil. For each column different letters indicate significant differences (p<0.05) after one-way ANOVA and Fisher’s post-hoc test.

<table>
<thead>
<tr>
<th>Blowers voltage (V)</th>
<th>Soil CO₂ efflux (μmol CO₂ m⁻² s⁻¹)</th>
<th>Coefficient of variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.07 ± 0.57 *</td>
<td>3.17 ± 0.52 *</td>
</tr>
<tr>
<td>6</td>
<td>4.49 ± 0.77 *</td>
<td>1.63 ± 0.33 *</td>
</tr>
<tr>
<td>8</td>
<td>4.06 ± 0.83 *</td>
<td>1.39 ± 0.11 *</td>
</tr>
<tr>
<td>12</td>
<td>4.10 ± 0.79 *</td>
<td>1.38 ± 0.08 *</td>
</tr>
</tbody>
</table>

Pressure test
Considering all the 282 measurements, the maximum ΔP was on average +4 ± 0.4 Pa (positive sign means overpressure in the chamber). Generally, spikes of 4-5 Pa occur only occasionally during a measurement and were not influenced by temperature increase and H₂O concentration inside the chamber (an example of ΔP variation during a typical measurement is reported in Fig. 5a – Supplementary material). Steduto et al. (2002) explained these short time variations by the functioning of the air pump located inside the analyser. Inside Takle et al. (2004) showed that also wind could induce pressure fluctuation. In our case, due to the coastal location of the experimental site, wind could play a major role on chamber pressure fluctuations. Positive or negative pressure perturbations could be dependent on wind intensity and direction as previously demonstrated (Kutsch et al. 2001).

Considering all the 90 seconds of the measurement, ΔP showed a net variation of +0.2 Pa. Although the effect of pressure is connected to the degree of soil permeability (Takle et al. 2003), these levels of over pressurization should not inhibit the natural soil CO₂ efflux (Lund et al. 1999) and thus we can exclude sensible errors on the ecosystem respiration measurements.

Radiation test
The reduction of the radiation available for the ecosystem is unavoidable, and the degree of this reduction depends on chamber wall material properties and on the shade of the holding frame as well as on the solar angle. As reported in Fig. 3a, the Lexan transmittance of the radiation was close to 0 in the UV region (< 400 nm), while reached about the 90% in the photosynthetic active region (PAR, 400-700 nm). Moreover, the transmittance in this region was affected neither by the different levels of radiation nor by the different radiation angle (changing with the hours of the measurement – Fig. 3b). Out of the PAR, the transmittance became lower, reaching values of about 20% in the SWIR region (short wave infrared, about 1600 nm) that did not influence the photosynthetic activity in the short term (Fig. 3a). These values of transmittance are similar (Pickering et al. 1993) or higher than the transmittance reported for others chambers (Held et al. 1990, Steduto et al. 2002, Bachman et al. 2010).

Blowers test
Inside the chamber, wind speed increased with chamber height, with the minimum wind speed recorded at 2 cm height (soil level) and the maximum between 42 and 52 cm height (Fig. 4b). Moreover, the wind speed was maximum at the zenith angle of 90° (perpendicular to the soil layer), while the minimum was found at 0° and 180° (parallel to the soil layer) (Fig. 4a). Several studies reported a change of the boundary layer at the soil level as a function of the wind speed and the height.
consequence of the fans functioning, causing an overestimation of soil CO$_2$ effluxes (Baldocchi et al. 1988, Hanson et al. 1993, Pumpanen et al. 2004). In our chamber, the lowest wind speed was recorded in the vicinity of the soil and the blowers speed did not sensibly affect the soil CO$_2$ emission rates. On the contrary, it improved significantly the precision of the measurement expressed as the coefficient of variation of the flux (Tab. 2).

Chamber comparison

The result of the comparison showed a non-significant deviation between the fluxes measured by the Canopy Chamber and the Soil Survey Chamber 8100-103, as demonstrated by the linear regression with a not significant intercept (p = 0.82) and not different from the 1:1 line (Fig. 5). Although the comparison was conducted on bare soil, the small deviation resulting between the averaged points and the Canopy Chamber is probably due to the high spatial variability generally present in soil CO$_2$ efflux (Stoyan et al. 2000).

CO$_2$ flux measurements in a Mediterranean garrigue

Over the two years of field measurements, the environmental factors (photosynthetically active radiation, air temperature, soil water content and soil temperature) showed high temporal variability, with the typical trends of the Mediterranean climate: the highest values of air, soil temperature and radiation were measured together with the lowest value of soil water content and vice versa (Fig. 6A and Fig. 6B). During the same period, the CO$_2$ fluxes measured by the Canopy Chamber showed a significant seasonal variability (Repeated measures ANOVA, p<0.0001 – Fig. 6C), similar between the two years: the gross photosynthesis (GP) increased almost continuously from the winter period (11.98 ± 0.84 µmol CO$_2$ m$^{-2}$ s$^{-1}$) until the early
spring (16.12 ± 1.64 µmol CO$_2$ m$^{-2}$ s$^{-1}$). Afterwards, following the decrease of soil water content, GP started to decline until it reached its minimum in summer (3.45 ± 0.83 µmol CO$_2$ m$^{-2}$ s$^{-1}$). Total ecosystem respiration (TER) showed a similar temporal trend (Fig. 6C) increasing from the winter value of 7.22 ± 0.55 µmol CO$_2$ m$^{-2}$ s$^{-1}$ to the maximum of 10.12 ± 1.64 µmol CO$_2$ m$^{-2}$ s$^{-1}$ in spring; then gradually decreasing until the minimum of 3.49 ± 0.20 µmol CO$_2$ m$^{-2}$ s$^{-1}$ at the end of the summer. Consequently, NEE showed a maximum uptake of CO$_2$ during late winter-spring (about -7.69 ± 1.45 µmol CO$_2$ m$^{-2}$ s$^{-1}$); after this period it gradually reduced, reaching a balance between the GP and TER during the summer (Fig. 6C). This seasonal variation of GP, TER and NEE is similar to that observed in other Mediterranean ecosystems (Xu & Baldocchi 2004, Pereira et al. 2007, Allard et al. 2008) where productivity rates are higher in spring followed by a strong summer reduction connected both to the stomatal and non-stomatal limitation to the photosynthesis (Galmés et al. 2007, Grassi et al. 2009) and to the drought semi-deciduous habit of Cistus species (Werner et al. 1999, De Dato et al. 2013). The autumnal rains re-activated both photosynthetic and respiratory processes, but to different extent: TER peaked at 7.58 ± 0.21 µmol CO$_2$ m$^{-2}$ s$^{-1}$; while GP reached only 4.63 ± 0.03 µmol CO$_2$ m$^{-2}$ s$^{-1}$. As a result, the ecosystem became a net source of CO$_2$ (+2.69 ± 0.32 µmol CO$_2$ m$^{-2}$ s$^{-1}$).

The delay of the autumnal recovery of the photosynthesis is due to the summer semi-deciduous habits of Cistus in semi-arid environment; meanwhile, the availability of respiratory substrates, derived from leaves fall and fine roots dead during the summer drought (Kuzyakov & Gavrichkova 2010), coupled with favourable soil water conditions (Fig. 6B), substantially increased the respiratory fluxes, as already observed in other arid and semi-arid ecosystems (Jarvis et al. 2007, Pereira et al. 2007, Unger et al. 2012). A comparison of the fluxes measured by our Canopy Chamber with those deriving from comparable or different measuring techniques, in similar environment is limited because of the lack of data. However, GP and TER reported by our investigation are similar to the fluxes measured with a chamber system in a cork oak understorey in Portugal, and mainly composed by Cistus crispus and Cistus salviifolius (Correia et al. 2014). Moreover the fluxes measured in this study were within the values measured by eddy covariance and reported by Unger et al. (2010) for a savannah-like woodlands during drought period and Reichstein et al. (2002) for a Juniperus phoenícia L. shrubland located near our experimental site.

Conclusion

The developed modular Canopy Chamber was a useful tool to measure the CO$_2$ fluxes at ecosystem level. The chamber tests showed microclimatic disturbances within the range (and in some case outperformed) of other chambers reported in the literature. The error due to the chamber leaks is estimated in 1% per minute; the temperature increment was always below 1.3 °C, the visible radiation reduction due to chamber walls was about 10% and the pressure variations between outside and inside the chamber were in such a range that the gas exchange measurements were not critically altered. In addition, we found that the use of radial ventilators, oriented to move the air in vertical direction, guaranteed an optimal air mixing with the minimum interference with the soil CO$_2$ effluxes.

Furthermore, the open field application showed the suitability of this instrument to monitor the CO$_2$ fluxes (NEE, TER and estimated GPP) in remote areas, with relative small and complex plant canopies as a semi-arid Mediterranean garrigue. There, the Canopy Chamber was able to detect CO$_2$ fluxes in a wide range of environmental conditions, evidencing the high seasonality of the CO$_2$ fluxes and giving the opportunity to obtain both NEE and TER during daytime. These positive tests and application indicated that this Canopy Chamber could be used in various experimental situations and could give the opportunity to know the dynamics of CO$_2$ fluxes of shrubland vegetation as well the contribution of understory shrubland vegetation to the whole forest ecosystem fluxes.

Acknowledgements

The authors thank the financial support by the European Union FP7 - Infrastructure-2008-1 project INCREASE, contract no. 227628.

References

Fig. 6 - Measured values recorded during the field application of the chamber. (A) Air condition inside the chamber: the grey diamonds represent the incident radiation while the black circles represent the air temperature (°C). (B) Soil condition: white diamond and black circle represent soil water content and soil temperature at 5 cm depth, respectively. (C) Gross photosynthesis (GP; grey triangles), Ecosystem Respiration (TER; black triangles) and Net Ecosystem Exchange (NEE; white circle). The bars represent the standard error of the mean (n=6).

Guidolotti G et al. - iForest 10: 597-604
Canopy Chamber to monitor shrubland carbon dioxide dynamics

343-351. - doi: 10.1016/S1360-1385(03)00106-X

Savage KE, Davidson EA (2003). A comparison of manual and automated systems for soil CO2 flux measurements: trade-offs between spatial...

Supplementary Material

Fig. S1 - The canopy chamber system.

Fig. S2 - Time course of differences between inside-outside chamber pressure (ΔP), H2O concentration and chamber temperature during the 90 seconds of a typical measurement.

Link: Guidolotti_2209@suppl001.pdf