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A quick screening to assess the phytoextraction potential of cadmium 
and copper in Quercus pubescens plantlets
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The relevance of the environmental pollution by heavy metals warrants the
necessity to develop and assess more efficient plant-based technologies. This
study was conducted to evaluate a quick screening approach in order to inves-
tigate the cadmium (Cd) and copper (Cu) phytoextraction potential of Quercus
pubescens in a micro-propagation system. Increasing concentrations of Cd (0,
5, 50, and 250 µM) and Cu (0, 5, 50, 250 and 500 µM) were separately applied
to  evaluate  the  effect  of  metals  on  their  absorption  and  accumulation  in
downy oak plants. At high concentrations, Cd and Cu significantly reduced the
dry biomass of shoots and roots and the plant tolerance index. Cd was toxic at
increasing concentrations, inducing higher reduction of shoot dry mass than
roots, whereas Cu increased dry mass at 5 µM. This study represents the first
attempt to assess Cd and Cu uptake in Q. pubescens under in vitro conditions.
The in vitro screening potential is meanly related to the following purposes:
(i) proper selection of plant materials resilient to excess metals in the growth
substrate; (ii) efficient removal of metals by the selected tree species; (iii)
minor interference with the growth of plants accumulating metals in their tis-
sues; (iv) rapid provision of plant materials for tree breeding programs.

Keywords: Heavy Metals, Phytoremediation, Downy Oak, Micropropagation

Introduction
The accumulation of heavy metals in soils

and water poses a risk to the environmen-
tal  and human health  (Khan et  al.  2008).
Considerable progress in phytoremediation
has  been  made with  metals  using  hydro-
ponically-cultured  plants  transplanted  in
metal-polluted sites, where plants eventu-
ally absorb and concentrate metals in their
roots and shoots (Tognetti et al. 2013). Phy-
toremediation  is  a  well-recognized,  envi-
ronmental-friendly strategy to control pol-
lution by heavy metals (Ali et al. 2013). Phy-
toremediation includes strategies like phy-
toextraction and phytostabilization, which
are defined by the preferential  accumula-
tion of pollutants by plants in their above-
and  below-ground  organs,  respectively
(Pulford & Watson 2003, Pilon-Smits 2005).

Among  heavy  metals,  cadmium  (Cd)  is
one of the most threatening due to its toxi-
city for the environment, crops and there-
fore for consumers (Perfus-Barbeoch et al.
2002). Cadmium has a strong carcinogenic
potential  (García-Esquinas et al.  2014) and
is also very toxic for plants, affecting water
and nutrient uptake, as well as their photo-
synthetic  efficiency  (Pietrini  et  al.  2010).
Copper (Cu) is a microelement essential for
plant  growth,  though it  may become po-
tentially  toxic  at  elevated  levels,  particu-
larly  as  a  result  of  agricultural  practices,
and industrial or municipal waste disposal
on land (Ali et al. 2004).

The plant capacity to tolerate metals can
rely  on  a  variety  of  resistance  and  toler-
ance  mechanisms  (Pietrini  et  al.  2010,
Wang  et  al.  2014).  Plants  have  evolved

avoidance  strategies  or  exclusion  pro-
cesses,  which  reduce  metal  accumulation
in cells, as well as mechanisms of surviving
despite the accumulation of large amounts
of metals (Rascio & Navari-Izzo 2011). Phy-
toextraction can be achieved through hy-
peraccumulator  plants,  which  exhibit  the
capability to take up from soil large quanti-
ties of heavy metals, which are then trans-
located to the epigeous parts (Wong 2003,
Yang  et  al.  2004).  However,  these  plant
species  have  low  biomass  accumulation
and  removal  potential  in  absolute  terms.
Therefore,  selection  and/or  breeding  of
suitable plant genotypes based on biomass
production,  accumulation  potential,  root
traits, growth rate, environmental suitabil-
ity  and  metal  resilience  are  required  for
their use in the remediation of heavy metal
contamination  (Wang  et  al.  2014).  In  the
last  ten  years,  research  was  focused  on
highly  productive  crop  plants,  such  as
crops, maize, sunflower, rice (Komarek et
al. 2007,  Murakami & Ae 2009), as well as
on short rotation forest trees,  i.e.,  willow
and poplar (Fernàndez-Martínez et al. 2014,
Baldantoni  et  al.  2014).  Phytoextraction
carried  out  with  the  use of  other  woody
plants can be extremely interesting for the
restoration  of  contaminated  sites,  where
environmental  conditions  are  unsuitable
for  growing energy plants,  as  well  as  for
their longer reproductive cycles (Paoletti &
Günthardt-Goerg  2006,  Cocozza  et  al.
2012).

Biotechnologies  are  currently  available
for  better  understanding  the  process  of
heavy metal uptake by trees and exploring
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their potential and exploitability in the re-
mediation improvement (Capuana 2011). In
vitro cultures  provide  several  advantages
when the plant cell tolerance to toxic ele-
ments is  to be examined in experimental
studies (Golan-Goldhirsh et al. 2004, Doran
2009). In this sense,  in vitro screening is a
preliminary  tool  for  testing  woody  plant
materials, reducing the growth period and

the  treatment  duration,  as  well  as  the
space  needed  for  the  experiments  (Con-
falonieri et al. 2003, Di Lonardo et al. 2011).
We anticipate that in vitro cultures repre-
sent a valuable research tool for phytore-
mediation of contaminated substrates and
provide the required axenic conditions for
screening the potential  of a plant species
to  tolerate  and  accumulate  heavy  metals

(Di Lonardo et al. 2011, Iori et al. 2012). Par-
ticularly,  Di  Lonardo et al.  (2011) set up a
test for the quick selection and assessment
of poplar clones aimed to characterize the
most  suitable  material  for  phytoremedia-
tion. This approach helps the quick evalua-
tion  of  the  most  promising  candidates
(plant species and their clones) for further
trials  on  polluted  soils.  Poplar  has  been
used as model species in this screening test
(Di Lonardo et al. 2011). However, the effi-
cacy of this approach to test other woody
plant  species,  not  traditionally  used  for
phytoremediation purposes, is unknown.

Quercus species  are  long-living  forest
trees  whose  micropropagation  in  vitro is
sometimes troublesome. Nonetheless, pre-
liminary results on the tolerance of downy
oak (Quercus pubescens Willd.) seedlings to
metal-polluted substrates  has  proven this
species as an interesting candidate for the
phytostabilization  of  contaminated  sites,
particularly  in  marginal  areas  (Cocozza et
al.  2012).  In this  context,  the aims of  the
present  study  were  to:  (i)  assess  growth
perfomances of micropropagated plantlets
of  downy  oak  (Q.  pubescens  Willd.)  culti-
vated  on  Cd  and  Cu  artificially-contami-
nated substrate; (ii) define their uptake po-
tential and metal bioaccumulation in roots
and shoots at increasing concentrations of
metals in the substrate.

Materials and methods

Plant material and in vitro growth 
condition

Plant  material  was  obtained  from  cut
buds  of  two  years  old  downy  oak  seed-
lings.  The  buds  were  washed  with  tap
water and their surface sterilized by Cl 2%.
In  vitro proliferating  microshoots  of  Q.
pubescens were  subcultured  on  woody
plant  medium  (WPM  –  Lloyd  &  McCown
1980), added with 2% sucrose, 0.5 mg l-1 BA
at pH 5.6, in baby food-glass jars sterilized
by autoclaving at 121 °C and 108 kPa for 20
min. The aseptic cultures were incubated in
a growth chamber at 23 ± 1 °C with a 16-h
photoperiod  (40  µE  m-2 s-1)  and  routinely
subcultured  every  4  weeks.  To  promote
rooting,  microshoots  were placed  in  con-
tact with 20 mg l-1 IBA half strength WPM
medium for 24 h in growth chamber. Final-
ly, microshoots were transferred to phyto-
hormone-free  WPM  medium  for  four
weeks,  added  with  1  g  l-1 charcoal  to  re-
move  hormone  carry-over  effect  and  en-
hance shoot  and  root  elongation.  At  this
point  of  the  experiment,  the  lack  of  su-
crose  in  the  medium  induced  well-devel-
oped rooted plants to autotrophic phase;
gas exchange was improved with autotro-
phic micro-propagation (Fig. 1).

Metal treatment
Well-developed  rooted  plantlets  were

transferred  to  phytohormone-free  WPM
medium containing different metal concen-
trations: 0, 5, 50, 250 µM Cd and 0, 5, 50,
250 and 500 µM Cu, supplied as CdSO4 and
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Fig. 1 - Plantlets grown in
micro-propagation (five glass
jars per treatment containing

five rooted shoots each)
after 4 weeks of

Cu treatment.
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CuSO4, respectively. Twenty plants per con-
centration  (four  glass  jars  per  treatment,
containing five rooted shoots  each) were
used  in  the  experiment.  Other  20  plants
were  dried  at  70  °C  for  24  h  and  then
weighed to estimate a mean value of the
dry biomass at the beginning of the experi-
ment.

Determination of metal content
After 15 days of treatment, plantlets were

gently  removed  from  the  medium  and
roots  were carefully  washed.  Roots  were
desorbed with 10 mM CaCl2 solution for 10
min to remove the adhering metals  from
the cell walls and determine the intracellu-
lar fraction of heavy metals. CaCl2 was used
as  extractant  to  avoid  plasma membrane
alteration  and  metal  displacement.  Plant-
lets were separated into shoots and roots,
dried at 70 °C for 24 h and then weighed.
The dry biomass production (dry biomass
at  the  end of  the experiment minus  that
previously  estimated  at  the  beginning  of
the  experiment)  was  used as  a  measure-
ment of  the metal  toxic effects (Baker &
Walker 1989). The tolerance index (Ti) was
calculated  as  the  ratio  between  the  dry
mass of plants (shoots and roots) grown in
the solution with metal and that of plants
grown in the control solution (Zacchini et
al. 2009).

Roots and shoots of plantlets exposed to
CdSO4 and CuSO4 were ground in a stain-
less steel plant mill and mineralized in 4 ml
concentrated HNO3 and 1 ml concentrated
HClO4 at 225 °C using an automated heating
block (Digester DK 42/26®, Velp Scientifica,
Milano,  Italy).  After  digestion,  Cu  and  Cd
were  determined  by  inductively  coupled
plasma optical emission spectroscopy (ICP-

OES, Varian Vista-MPX). The procedure was
validated with reference materials of pop-
lar leaves (GBW 07604 – limit of detection 1
μg l-1).  Metal  contents were calculated as
the product between mean dry biomass of
plantlets (n = 5 seedlings) and mean metal
concentration in each plant.

Statistical analysis
Treatments were performed in quintupli-

cate and repeated at least in four indepen-
dent  experiments.  Normal  distribution  of
the data was tested using the Kolmogorov-
Smirnov  test;  since  no  significant  depar-
tures from normality were found, paramet-
ric comparison methods were used (Razali
2011). Data were averaged on a plant basis
and the individual means were used for the
analysis. The effects of metal treatment on
the  development traits  and metal  uptake
were tested using the repeated-measures
analysis of variance (ANOVA). To assess the
differences  between  treatments  for  the
measured parameters, a post hoc compari-
son  of  means  was  performed  using  the
least  significant  difference  (LSD)  test  or
the Tukey’s  test  with  α =  0.05.  Statistical
analysis was performed using the software
packages STATISTICA® (StafSoft Inc., Tulsa,
OK,  USA)  and SPSS® ver.  16.0  (SPSS  Inc.,
Chicago, IL, USA) for Windows™.

Results and discussion
The  micro-propagation  system  high-

lighted that high concentrations of Cd and
Cu  were  toxic  for  downy  oak.  The  study
clearly illustrated the detrimental effects of
excess metal on plant growth, as shown by
the  smaller  dry  biomass  accumulation  in
shoots and roots of Cd-treated plants com-
pared  with  non-contaminated  plantlets

(Fig.  2).  As expected, Cd-treated plantlets
showed a decreased shoot biomass at in-
creasing concentration of the contaminant,
while the biomass of roots was negatively
affected  in  a  similar  way  by  all  Cd  treat-
ments  (Fig.  2).  Regarding  the  Cu  treat-
ments, the dry biomass of shoots and roots
of plantlets was significantly higher at 5 µM
compared with other treatments and con-
trol conditions, suggesting a positive effect
of  low Cu concentration on plant growth
(Kunjam et al. 2015). However, copper be-
came highly toxic at higher concentrations
(Fig. 2). For both metals, the accumulations
in  seedlings,  shoot  and  root  tissues  in-
creased with  increasing metal  contamina-
tion (Fig. 3). The accumulation of Cd and Cu
was significantly higher at the highest con-
tamination (50 and 250 µM Cd treatment;
250  and  500  µM  Cu  treatment  -  Fig.  3).
Thus,  the reduced growth of micro-propa-
gated downy oak plantlets was likely due
to the high metal accumulation in the roots
and to a moderate metal  translocation to
the shoots.

The  tolerance  index  in  shoots  of  Cd-
treated  plants  was  higher  at  low  (5  µM)
than at  high (50 and 250 µM) metal  con-
centration, while no significant differences
in tolerance index of roots were observed
between Cd treatments (Fig. 4). The toler-
ance index of  shoots  in Cu-treated plants
was higher at 5 µM and 250 µM compared
to other concentrations, while the value in
roots was higher at low than at high metal
concentration  (Fig.  4).  However,  the  low
tolerance  index  at  increasing  contamina-
tion in both metal treatments correspond-
ed to a reduction in plant growth. The high
concentration  of  non-essential  (Cd)  and
essential (Cu) metals could have negatively
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Fig. 2 - Treatment
effects on shoot
and root dry bio-

mass in Cd- and
Cu-treated plants.

Mean values (±
standard errors)
followed by the
same letter are

not significantly
different after

LSD test
(p ≤ 0.05).
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Fig. 3 - Cadmium and Cu 
contents (milligram per 
kilogram of dry matter) in
shoots, roots and whole 
seedlings of Cd- and Cu-
treated plants. Mean val-
ues (± standard errors) 
followed by the same let-
ter are not significantly 
different after LSD test 
(p ≤ 0.05).

Fig. 4 - Tolerance index in shoots
and roots of Cd- and Cu-treated 
plants. Mean values (± standard 
errors) followed by the same let-
ter are not significantly different
after LSD test (p ≤ 0.05).
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affected the  photosynthetic  machinery  in
these  woody  plants  (Di  Lonardo  et  al.
2011). Nevertheless, the potential for metal
accumulation at the root level might have
been affected by the release into the rizo-
sphere of chelating agents with high affin-
ity for metals, thus favoring metal seques-
tration (Schat et al. 2002, Shah & Nongkyn-
rih 2007).

The  in vitro culture approach adopted in
this  study  has  proven  to  be  effective  to
test whether downy oak could be further
assessed for resilience to metal contamina-
tion over longer experimental periods and/
or  under  in  situ conditions.  Indeed,  the
metal  concentrations  used  in  our  micro-
propagation conditions were very high, in
particular  when  considering  that  downy
oak is not widely recognized as an efficient
forest  species  for  decontamination  pur-
poses. Nonetheless,  its  potential  Cd accu-
mulation is high, as detected in pot experi-
ments (Cocozza et al. 2012), and this might
advocate  its  use  in  ecological  restoration
of  polluted  sites  in  marginal  areas.  Our
results  provide  a  preliminary  evidence  of
the remediation potential of downy oak in
vitro, although they should not be extrapo-
lated to predict the effects of heavy metals
on the growth of mature oak trees. The in
vitro approach  offered  a  stable  growth
medium,  where  plants  freely  absorbed
metals from the substrate and translocate
them  to  shoots,  with  minor  interactions
with  surrounding  conditions  during  the
phytoextraction process.  Common-garden
investigations  and  provenance  trials  are
planned  in  this  species  to  test  whether
geographic  variations  of  adaptive  traits
should  be  considered  in  the  selection  of
material  to  be  used in  the  restoration  of
contaminated  sites  in  marginal  areas  of
Italy.  The  in  vitro screening carried out in
this study allowed for: (i) testing the toler-
ance of plant materials to high-concentra-
tion metals  in  a  short  period of  time;  (ii)
providing  a  suitable  environment  for  the
study  of  plant  processes  in  response  to
metal  treatments.  This  approach  can  be
further  improved  towards  appropriate
breeding strategies and field trials.
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