Cimini D, Portoghesi L, Madonna S, Grimaldi S, Corona P (2016). **Multifactor empirical mapping of the protective function of forests against landslide occurrence: statistical approaches and a case study** iForest – doi: 10.3832/ifor1740-008

APPENDIX 1

Tab. S1 - Lithological classes.

Cod.	Geological unit	Lithological class	
Da	Alluvial deposits (Quaternary)		
Dd	Colluvial and detritic deposits (Quaternary)	Loose deposits	
Dm	Moraine (Quaternary)		
Dol	Dolomite rock (Upper Triassic)		
CD	Cassiana, Sciliar and Serla Sup.dolostones, Marmolada limestone (Upper Triassic)	Calcareous and dolomitic rocks	
DC	Serla dolostone, Werfen formation (Lower-Middle Triassic)		
Со	S. Vigilio group, Grey limestone, Norico dolostone (Lower Dogger-Upper Lias)		
Ds	Soverzene formation, Dolomia della Schiara (Middle-Upper Lias)		
Cco	Vajont limestone, S. Boldo dolostone (Dogger)		
CCc	M. Cavallo limestone, Calcarenite di Col Palù (Cretaceous)		
Ar	Auronzo, del Fernazza, di La Valle (Wengen Group) formations (Middle Triassic)		
AC	Acquatona, Livinallongo formation, Zoppè sandstones (La Valle Group) (Middle Triassic)	Arenitic rocks	
ACc	S. Cassiano formation (Upper Triassic)		
CA	Agordo, dell'Ambata, A Gracilis, Di Dont formations (Upper Triassic)		
Ar	Raibl Group (Upper Triassic)	Evaporite rocks	
Cas	Biancone, Calcare di Soccher (Cretaceous – Malm)		
Cs	Igne fomation (Lower Dogger-Upper Lias)	Argillaceous	
Cn	Rosso Ammonitico, Campotorondo limestone, Fonzaso formation (Dogger)	-limestone rocks	
Cam	Scaglia Rossa, Scaglia Cinerea, Marna della Vena d'Oro (Lower Eocene-Upper Cretaceous)		

Cimini D, Portoghesi L, Madonna S, Grimaldi S, Corona P (2016). **Multifactor empirical mapping of the protective function of forests against landslide occurrence: statistical approaches and a case study** iForest – doi: 10.3832/ifor1740-008

Tab. S2 - Permeability classes.	Tab.	S2 -	Permeab	ilitv	classes.
---------------------------------	------	------	---------	-------	----------

Cod.	Permeability class
High	Rock with high permeability (primary permeability related to the capacity of rock to transmit fluid
Ingn	through intergranular pore space).
Medium	Rock with medium permeability (primary permeability related to the capacity of rock to transmit fluid
Iviculuili	through intergranular pore space).
Madium (f)	Rock with medium permeability (secondary permeability related to the capacity of rock to transmit
Medium (f)	fluid through openings and fractures formed after consolidation).
Low	Rock with low primary permeability (primary permeability related to the capacity of rock to transmit
LOW	fluid through intergranular pore space).
	Rock with low secondary permeability (secondary permeability related to the capacity of rock to
Low (f)	transmit fluid through openings and fractures formed after consolidation)results from fracturing of the
	intact rock).

Cimini D, Portoghesi L, Madonna S, Grimaldi S, Corona P (2016). **Multifactor empirical mapping of the protective function of forests against landslide occurrence: statistical approaches and a case study** iForest – doi: 10.3832/ifor1740-008

Tab. S3 - Soil types.

Cod.	Soil type
GA2	Soils in morphologically lower areas of the alluvial plain. Soils with pedogenetic structure in depth and weakly differentiated profiles (<i>Calcaric Cambisols</i>).
DA1	Soils on limestone with organic matter accumulation on the surface. Shallow, weakly-developed soils pre- dominate on rocky slopes and plateau surfaces (<i>Rendzic Leptosols</i>).
DB1	Somewhat shallow soils on limestone with pedogenetic structure in depth and weakly differentiated profiles. Soil of medium and high slopes on mountains. (<i>Calcaric Leptosols</i>).
DB2	Shallow soil on stable surfaces. These soils are moderately deep soils, gravel and moderate differentiation of the profile (<i>Calcaric Cambisols</i>). On steep surfaces and/or eroded and very gravelly, low differentiation of the profile (<i>Calcaric Leptosols</i>).
DB3	Soils derived from silicate materials located on stable slopes. Soils with moderately differentiated profiles with a pedogenetic structure and aluminium and/or iron oxide accumulation in depth. (<i>Sesquic Cambisols</i>)
DB4	Soils with moderately deep, gravelly, moderate differentiation of the profile (<i>Calcaric Cambisols</i>) and, secondarily, deep soil, gravel, high differentiation of the profile with leaching of clays (<i>Skeleti-Cutanic Luvisols</i>).
DB5	Soils with moderate-to-deep, gravelly, high-profile differentiation with leaching of clays (<i>Cutanic Luvisols</i>)
VB1	Soils of valley floors in the prevalence of fluvial deposits and with vast local quantities of glacial deposits. Soils are thin and gravelly with low differentiation of the profile (<i>Calcaric Leptosols</i>). The soils are moderately deep, gravelly with a moderate differentiation of the profile (<i>Calcaric Cambisols</i>) on stable surfaces.