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Probabilistic prediction of daily fire occurrence in the Mediterranean 
with readily available spatio-temporal data

Panagiota Papakosta, 
Daniel Straub

The prediction of wildfire occurrence is an important component of fire man-
agement. We have developed probabilistic daily fire prediction models for a
Mediterranean region of Europe (Cyprus) at the mesoscale, based on Poisson
regression. The models use only readily available spatio-temporal data, which
enables their use in an operational setting. Influencing factors included in the
models are weather conditions, land cover and human presence. We found
that the influence of weather conditions on fire danger in the studied area can
be expressed through the FWI component of the Canadian Forest Fire Weather
Index System. However,  the  prediction ability  of  FWI  alone was  limited.  A
model that additionally includes land cover types, population density and road
density was found to provide significantly improved predictions. We validated
the probabilistic prediction provided by the model with a test data set and
illustrate it with maps for selected days.

Keywords: Fire Occurrence, Prediction, Canadian Forest Fire Weather Index,
Poisson Regression

Introduction
Predicting the occurrence of wildfire inci-

dents  is  an  important  component  of  fire
management.  Due to the uncertainties  in
the influencing factors,  as  well  as  to ran-
dom effects in the fire process, such a pre-
diction  must  necessarily  be  probabilistic.
Various probabilistic models are proposed
in the literature, including Poisson models
(Cunningham & Martell 1973,  Mandallaz &
Ye  1997,  Syphard  et  al.  2008),  logistic
regression (Vasconcelos et al. 2001, Preisler
et al. 2004, Kalabokidis et al. 2007, Syphard
et al. 2008,  Chuvieco et al. 2009,  Arndt et
al.  2013),  multiple  regression  (Sebastián-
López et al. 2008, Oliveira et al. 2012), neu-
ral networks (Vasconcelos et al. 2001, Vasi-
lakos et  al.  2009) and Bayesian networks
(Dlamini 2009). Recently, machine learning
algorithms have been found to be well suit-
ed to modeling and predicting fire occur-
rences, due to their greater flexibility com-
pared  to  classical  regression  analysis.  In
particular, the Maxent (maximum entropy)
algorithm  (Parisien  &  Moritz  2009)  and
methods based on decision tree learning,

such as the random forest algorithm (Mas-
sada et al. 2012,  Oliveira et al.  2012), have
been applied. The choice of the appropri-
ate model depends on the influencing fac-
tors selected and their spatial and tempo-
ral resolution, as well as the purpose of the
model prediction.

Past  probabilistic  models  of  fire  occur-
rence use weather factors, anthropogenic
factors or combinations thereof as explan-
atory variables (Plucinski 2012). The effect
of climatic factors is often represented by
components  of  the  Canadian  Forest  Fire
Weather Index System (CFFWIS - Martell et
al.  1987,  Wotton  et  al.  2003,  Ager  et  al.
2014, Venäläinen et al. 2014). In these stud-
ies, the temporal resolution is daily and the
spatial resolution is regional, ranging from
1 to several  km2 (except  Venäläinen et al.
2014). Although CFFWIS was originally de-
veloped for Canadian climates and vegeta-
tion, it is commonly used for predicting fire
occurrence in the Mediterranean (Viegas et
al. 1999, Camia & Amatulli 2009, Venäläinen
et al. 2014). Still, this necessitates that the
CFFWIS  indicators,  in  order  to  categorize

fire  danger  level  (e.g.,  low,  moderate,
high),  be adjusted to the specifics  of  the
Mediterranean  climates  (Moriondo  et  al.
2006,  Giannakopoulos et al.  2011,  Dimitra-
kopoulos et al. 2011, Venäläinen et al. 2014).

Various studies have looked into the com-
bined effect of weather and anthropogenic
factors (Cardille et al. 2001,  Pew & Larsen
2001, Amatulli et al. 2006, Kalabokidis et al.
2007,  Syphard et al. 2008, Vilar et al. 2010,
Padilla  &  Vega-García  2011,  Miranda  et  al.
2012,  Oliveira et al.  2012,  Martínez-Fernán-
dez et al. 2013). The temporal resolution of
these  studies  is  seasonal  or  yearly,  and
thus  the  weather  factors  include  mean,
minimum and maximum temperatures,  as
well  as cumulative precipitation. Common
explanatory variables representing anthro-
pogenic influences are population density,
land  use,  distances  to  human-built  infra-
structures  (Catry  et  al.  2010).  However,
many  additional  variables  were  studied,
e.g., distance to campground (Chou & Cha-
se 1993),  holidays (Mandallaz & Ye 1997),
ownership of housing (Cardille et al. 2001),
proximity  to  urban  areas  and  roads  (Ro-
mero-Calcerrada  et  al.  2008,  Ager  et  al.
2014),  unemployment  rate  (Oliveira  et  al.
2012), rural exodus by means of population
decrease (Martínez-Fernández et al. 2013),
and hiking trail density (Arndt et al. 2013).
The spatial resolution in these studies var-
ies from cellular (1 km2 grid – Pew & Larsen
2001) to regional.

The aim of this paper is the development
of a daily probabilistic model for fire occur-
rences  in  Mediterranean  climates,  which
includes  both  natural  and  anthropogenic
factors. Such a daily predictive model with
fine  spatial  resolution  can  eventually  be
helpful  as  a  fire  management  tool.  Here,
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we show that the fire risk prediction at the
mesoscale  can  be  improved  with  readily
available  data  on  weather  and  anthropo-
genic factors, combined with a sound prob-
abilistic model.

In  the  proposed  model,  the  potential
influence  of  weather  conditions  is  repre-
sented by the Canadian Forest Fire Weath-
er  Index  System  (CFFWIS  -  Van  Wagner
1987). The anthropogenic influence is rep-
resented through spatial variables such as
land  cover  type  and  road  density,  which
was found to be a relevant indicator of fire
occurrence in  Amatulli  et al. (2006),  Syph-
ard et al. (2008) and  Oliveira et al. (2012).
The model is based on Poisson regression.
Its results are daily maps of fire occurrence
rates with 1 km2 spatial resolution. The use
of  readily  available  data  make the  model
easy to integrate into existing fire predic-
tion systems. This can improve fire occur-
rence predictions  due to  the high spatio-
temporal  resolution  (daily,  1  km2)  of  the
proposed model and the incorporation of
both weather and anthropogenic factors.

The  model  is  applied  to  the  island  of
Cyprus,  where  the  model  parameters  are
calibrated  from  observed  fire  events.  Cy-
prus is part of the Eastern Mediterranean
region, which is drier and warmer than the
more  commonly  studied  areas  of  Spain,
Southern  France  and  Northern  Italy.  The
data is separated into a learning set and a
validation set, which allows to investigate
the predictive power of the proposed mod-
el. It is found that the best prediction can
be achieved by combining the natural and
anthropogenic  factors.  The  main  factors
describing  anthropogenic  influences  are
found to be land cover, population density
and road density.

Methodology

Canadian Forest Fire Weather Index 
System

The Canadian Forest Fire Weather Index
System (CFFWIS –  Van Wagner 1987) was
first introduced across Canada in 1971 and
is  meanwhile  adapted  in  several  national
fire  danger  estimation  systems  (Taylor  &
Alexander  2006,  Camia & Amatulli  2009).

The input parameters required by CFFWIS
are daily values of easily observed weather
parameters  (dry  bulb  temperature,  wind
speed, relative humidity and precipitation).
CFFWIS consists of six components: three
fuel moisture codes (FFMC: Fine Fuel Mois-
ture Code; DMC: Duff Moisture Code; DC:
Drought  Code)  and  three  fire  behavior
indices (ISI:  Initial  Spread Rate; BUI: Build
Up  Index;  FWI:  Fire  Weather  Index).  A
detailed description of CFFWIS is available
in Van Wagner (1987) and Lawson & Armi-
tage (2008).

Probabilistic model for predicting fire 
occurrence

Fig.  1 summarizes  the  proposed  proba-
bilistic model by means of a Bayesian Net-
work (BN). In the BN, probabilistic depen-
dence among the variables is represented
graphically by means of arrows. This makes
it  convenient  not  only  for  graphical  com-
munication of the model but also for quan-
titative  probabilistic  modeling.  For  these
reasons,  BN  are  increasingly  applied  for
risk assessment of natural hazards, e.g., for
wildfire  occurrence  (Dlamini  2009),  rock-
fall  hazards  (Straub  2005),  avalanches
(Grêt-Regamey  &  Straub  2006),  tsunamis
(Blaser et al. 2009) and earthquakes (Bay-
raktarli et al. 2005, Kuehn et al. 2011, Bensi
et al. 2014). For a detailed introduction to
BN, the reader is referred to Jensen & Niel-
sen (2007).

The BN in  Fig.  1 models daily  fire occur-
rence in a cell of 1 km2, which is the spatial
unit  of  this  study.  In  the application  pre-
sented in this paper, there is no difference
between the BN model and the regression
model.  In  fact,  we  use  a  regression  ap-
proach to estimate the parameters of the
BN  model  as  explained  later.  However,
when using the model for prediction, not
all  explanatory  variables  may  be  known
with  certainty.  The  BN  allows  modeling
them as  random variables,  with  a  known
distribution. As an example, the forecasted
weather variables will be uncertain, which
can be directly implemented in the BN.

In the presented study, data is available
for all weather variables as well as all yel-
low variables.  All  these variables are con-

tinuous,  with the exception of  “land cov-
er”,  which has labeled states that  are re-
lated  to  fuel  type  (e.g.,  forest,  natural
grasslands,  olive  groves,  artificial  surface,
etc.). The orange variables are defined by
the  CFFWIS  functions  (see  above).  For
given values of the weather variables, they
are defined deterministically.

The  fire  occurrence  rate  λ,  which  is
defined as  the mean number  of  fires per
day and km2, is estimated from the data. In
our  model,  it  is  a  function of  land cover,
human  population  density,  road  density
and FWI. The variable “fire occurrences” N

 0, 1, 2, … is the number of fires in one cell∈
on  one  day.  For  a  given  daily  fire  occur-
rence rate λ, the number of fires follows a
Poisson  distribution,  assuming  indepen-
dence among fire events for given occur-
rence  rate.  The  conditional  probability  of
observing n fires given λ is thus (eqn. 1):

where n = 0, 1, 2, …, λ [Nr. Fires day-1 km2] is
the mean occurrence rate and α = 1 km2 is
the area of the cell.

Observations of N are used to estimate λ
based on eqn.  1,  as  described in the next
section.

Poisson regression
The response  variable is  the  number  of

fire occurrences N, which is a random vari-
able described by the Poisson distribution
with rate  λ. This motivates the use of the
generalized  linear  model  of  the  Poisson
regression  for  estimating  λ (Mandallaz  &
Ye 1997).  The rate  λ is  related to the ex-
planatory variables x = [x1, …, xk] by means
of the link function (eqn. 2):

where  β = [β0,  …,  βk]  is the vector of  re-
gression coefficients. This link function en-
sures that λ is a non-negative real number.
The mean occurrence rate is then given as
(eqn. 3):
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Fig. 1 - Bayesian Network for fire 
occurrence prediction. Blue nodes 
represent weather conditions; 
orange nodes are the components 
of the CFFWIS, which result in a 
FWI value; the variables in yellow 
represent the anthropogenic influ-
ence and the vegetation type; the 
variables in white are the pre-
dicted fire occurrence rate and the
actual number of fires. The yellow 
variables change over space but 
are constant in time, whereas all 
other variables change both in 
time and space. Dashed arrows 
indicate a dependence on the 
value of the previous day.
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Changing  one  of  the  explanatory  vari-
ables  from  xi to  xi+Δx,  while  keeping  all
other fixed, leads to a relative change in λ
of (eqn. 4):

In  the  numerical  investigations,  several
models are examined,  which differ in the
selection  of  the  explanatory  variables  x.
These are selected from a set of variables
describing  land  cover,  human  population
density,  road  density  and  components  of
the  CFFWIS.  Land  cover  is  a  categorical
variable; therefore, a separate binary vari-
able xi is defined for each of its categories.
This variable takes value 1, if the land cover
in this area belongs to this  category, and
value 0 otherwise.

Maximum likelihood estimation
Maximum likelihood estimation (MLE) is

applied to determine the coefficients β. For
the  Poisson  regression  model,  the  likeli-
hood function follows from eqn. 1 as (eqn.
5):

where md is the number of days with obser-
vations  and  ma is  the  number  of  spatial
units with observations, nij is the number of
fires observed on day i in the area j, xij are

the values of the explanatory variables on
day i in the area j.

The MLE is found as the value of  β that
maximizes L(β|n) (eqn. 6):

βMLE=argmax L (β|n )

No analytical solution to this optimization
problem  exists.  Numerical  optimization
must be applied. For this purpose, it is con-
venient to express the optimization prob-
lem in terms of  the log-likelihood instead
(eqn. 7):

In the numerical  investigations,  the sim-
plex search method and the quasi-Newton
method are used to solve eqn. 7, as imple-
mented in the Matlab functions fminsearch
and fminunc. The simplex search method is
found to not converge in the models that
include the categorical variable “land cov-
er”.

Diagnostics
To compare different models, the Akaike

Information  Criterion  (AIC)  is  employed
(Akaike 1974). The AIC allows to compare
models  of  different  complexity.  It  is  de-
fined as (eqn. 8):

where ln L(βMLE|n) is the maximum log-like-
lihood  and  (k+1)  is  the  number  of  coeffi-
cients βi of the model. The first term in the

AIC accounts for the likelihood of the mod-
el, the second term punishes models with
more parameters to avoid overfitting.

An additional comparison between mod-
els is performed with a validation data set
nV,  which is  not  used for  estimating  βMLE.
The  log-likelihood  of  βMLE calculated  with
the validation data set nV, i.e., ln L(βMLE|nV),
provides an additional indication of model
accuracy.

Numerical investigations

Study area: Cyprus
We  employ  data  from  the  Republic  of

Cyprus, which is selected due to its repre-
sentative  Eastern  Mediterranean  climate
(short  cool  winters  followed  by  long  hot
and dry summers), vegetation and fire his-
tory  and  data  availability.  The  study  area
and the five weather stations used in the
analysis are indicated in Fig. 2a. The natural
areas on the island are mainly covered by
coniferous  forests  (e.g.,  Pinus  brutia),
whereas  the  permanent  cultivated  areas
are  dominated  by  vineyards.  The  highest
peak of the study area is Olympus moun-
tain of the Troodos massiv (1952 m a.s.l. -
Fig. 2a). In the period 2001-2010, the mean
annual  number of  fire  occurrences in  the
study area  was  215 and the  mean annual
burnt area was 29 km2 (Joint Research Cen-
ter/IES  2011).  Data  of  fires  suppressed  by
the  state  forest  agency  (Department  of
Forests of Cyprus) for the period 2006-2010
is  shown  in  Fig.  2b.  The  dataset  includes
records  of  fires  of  all  sizes,  with  10%  of
recorded fires being less than 0.01 ha. The
total number of recorded fires is 616, which
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Fig. 2 -  (a) ASTER Digital Elevation Model (m) showing the highest peak of the Troodos massiv in white (1956 m a.s.l.) and the
included five weather stations on Cyprus; (b) Municipality borders of the area of the numerical investigations and registered fire
events during 2006-2010 (616 events); (c) population density; (d) road density; (e) land cover.
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corresponds to a mean annual number of
fire occurrences of 123.

Data types and data sources
Both  spatial  and  temporal  explicit  data

are used in this study. Data are managed in
a geodatabase processed with ArcGIS® 10.1
(ESRI,  Redlands,  CA,  USA)  and  Python®

2.6.8 (Python Software Foundation, Wilm-
ington,  DE,  USA) and are attached to a 1
km2 grid  covering  the  whole  area  of  the
case study (6447 grid cells). The population
density  in  each  grid  cell  (people  km-2)  is
determined  from  the  municipality  census
data (Fig. 2c). The road density (km km-2) is
computed from the actual length of roads
in each cell  (Fig. 2d). The land cover type
assigned to each cell  is  the  one covering
the largest  area within that  cell  (Fig.  2e).
According  to  Corine  land  cover  (2006),
forests  and  semi-natural  areas  together
with  agricultural  areas  cover  the  largest
part of the study area. The land cover type
“Pastures”  is  included  into  the  “Urban-
Wetland” land covers, since it covered only
a small area of the case study (7 km2).

Weather data interpolation and CFFWIS
calculation

Daily  weather  observations  (extracted
from 3 hr and 6 hr observations) are inter-
polated using Inverse Distance Weighting
(IDW –  Shepard 1968). Daily values of the
CFFWIS  components  are  then  calculated
for each grid cell based on the interpolated
values.

Temperature  is  additionally  adjusted  to
the altitude based on the normal lapse rate
(0.65 °C/100m –  Leemans & Cramer 1991).
At  each weather  station  i,  the equivalent
temperature at sea level is computed from
the  measured  noon  temperature  Ti as
T0,i=Ti +0.0065·hi, where hi is the altitude of
the weather station in m. The IDW interpo-
lation  is  performed  using  the  T0,i values,
resulting  in  a  temperature  value  at  sea
level  T0,c for  each  cell  c.  The  daily  noon
value of temperature in each cell Tc is then
computed as  Tc =T0,c-0.0065·hc.  Here,  hc is
the altitude at the center of cell c.

After the weather observations are inter-
polated, the daily FWI is calculated for each
cell based on the formulation given in Van
Wagner & Pickett (1985). The starting val-
ues of the fuel moisture codes for the first
day (Jan 1) are the ones proposed in  Law-
son  &  Armitage  (2008),  i.e.,  FFMC  =  85,
DMC = 6, DC = 15. The starting values were
reset every year.

Parameter estimation
After  the  data  pre-processing,  weather

interpolation and FWI calculation, each of
the 6447 grid cells is  described by spatial
information, noon daily weather conditions
and FWI, and recorded fire events for the
period 2006-2010 (11,772,222 records). Only
the  records  of  the  period  2006-2009
(9,419,067 records) are used for parameter
estimation.

Poisson regression with MLE is employed
as  described  above.  Various  candidate

models for the fire occurrence rate λ were
learnt with the data. All models are of the
form given in eqn. 3 and differ only in the
selection  of  parameters  employed.  From
these models,  five were selected and are
presented in this paper.

Results

Preliminary data analysis
Preliminary  analysis  of  the  time  series

2006-2010 is shown in Fig. 3 and in the Sup-
plementary  Material  (Fig.  S3,  Fig.  S4).  As
there are 616 recorded fires,  the average
occurrence rate of fires in this period is 5.5
× 10-5 fires d-1 km-2.

The results of  Fig. 3 show that there is a
statistically  significant  difference  in  the
conditional  means  of  ISI,  BUI  and  FWI,
which indicate  their  potential  as  explana-
tory  variables  in  the  regression  model.
However,  by  comparing  the  conditional
distributions graphically, it is also clear that
the  components  alone  have  only  limited
prediction  ability.  For  example,  fires  oc-
curred also on days and locations with FWI
values close to zero.

Regression analysis
The  investigated  alternative  candidate

models included the components BUI,  ISI
and  FWI  of  the  CFFWIS.  Maximum  likeli-
hood estimation (with respect to the learn-
ing set 2006-2009) results in the parameter
values, which best explains the data for a
given  model.  To  compare  the  different
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Fig. 3 - Histograms of (a)
FFMC, (b) ISI, (c) BUI and

(d) FWI (2006-2010) condi-
tional on fire occurrence.

CV=σμ is the coefficient of
variation.
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models,  the  AIC  is  applied,  which  corre-
sponds  to  the  maximum  log  likelihood
value and combined with a term that pun-
ishes the use of additional model parame-
ters to avoid overfitting (see eqn. 8).  The
model  including  both  BUI  and  ISI
(M_BUI_ISI) performed better than M_BUI
and M_ISI, and all three models proved to
perform worse than M_FWI.  For this  rea-
son,  FWI  is  selected  to  express  fire
weather  conditions  in  the  further  investi-
gated models.

In  Tab. 1 models M1 to M5 are arranged
according  to  their  increasing  number  of
explanatory  variables,  starting  from  M1
that  includes  FWI  as  the  sole  variable
(M_FWI), to M5 with 12 variables, including
FWI, road and population density and land
cover types. As an example, the predicted
rate of fires according to model M5 is (eqn.
9):

In models M2, M3 and M5, road density
as  well  as  (road density)2 are included as
explanatory  variables,  to  represent  the
non-linear effect of road density on the fire
occurrence rate observed from Fig. S4c (in
Supplementary Material). It is important to
stress that road and population density are
highly  positively  correlated,  and  are  also
dependent on land cover type.

Based on the learning data set, model M5
performs  best,  as  it  exhibits  the  lowest
AIC,  followed  by  M3  and  M4.  The  esti-
mated parameters of the explanatory vari-
ables  FWI,  road  density  and  population
density in all models M1-M5 are consistent.
In models  M4 and M5, the estimated pa-
rameters  of  the  land  cover  types  take
slightly different values. They are higher in
M4  due  to  the  fact  that  in  M5 the  addi-
tional terms in the link function describing
road  and  population  density  on  average
take a value slightly above zero.

It is also worthwhile noting that the vari-
ables describing road and population den-
sity in  Model  M5 are not  independent of
the  land  use  type.  Pearson’s  correlation
coefficient  r between  population  density
and urban & wetlands  land cover  type  is
0.48 and between road density and urban
& wetlands is 0.59. Therefore, the variables
population and road density in model M5
partly  express  the fact  that  fires  are  less
likely in  urban areas.  In M4,  where these
variables are not present, this effect is fully
described  by  β11 alone.  Because  of  this
dependence, there is also a significant cor-
relation (r = 0.56) between population and

road density.
Eqn. 4 is used to compare the sensitivity

of  the  studied  models  to  changes  in  the
explanatory variables. Tab. 2 shows the rel-
ative  change  of  λ,  as  predicted  by  M5,
when  changing  one  explanatory  variable
and keeping all others fixed. For FWI, pop-
ulation  density  and  road  density,  the
change of the variable is equal to one stan-
dard  deviation  σ,  whereas the land cover
types change from 0 to 1. For higher FWI, λ

increases and for higher population density
λ decreases.  These  results  agree  with  re-
sults in Fig. S4 (Supplementary Material).

Prediction
Fire  observations  of  the  study  area  in

2010 are used to verify the predictive ability
of the proposed models. The best model is
the one that best discriminates the actual
locations with fire occurrences from those
without.  This  is  described  by  the  sum  of
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Tab. 1 - Selected models with explanatory variables and estimated parameters (2006-
2009). (*): Permanent crops include olives, vineyards and fruits; (**): Urban-Wet-Past
variable includes Urban areas, Wetlands and Pastures.

Explanatory
variables Param

Selected Models

M1 M2 M3 M4 M5
Intercept β0 -10.61 -10.95 -10.92 -10.90 -10.90
FWI β1 0.0278 0.0282 0.0302 0.0327 0.0329
Road density [km km-2] β2 - 0.3236 0.3198 - 0.3217
(Road density)2 [km km-2] β3 - -0.0324 -0.0276 - -0.0234
Population dens. [people km-2] β4 - - -0.0018 - -0.0010
Arable β5 - - - -0.6501 -0.9681
Permanent* β6 - - - 0.8383 0.3235
Heterogeneous β7 - - - 0.4098 -0.0760
Forest β8 - - - 0.3497 0.1057
Shrub/Herbaceous β9 - - - 0.3279 0.0486
Open spaces β10 - - - -0.1310 -0.1882
Urban-Wet-Past** β11 - - - -0.9556 -1.1863
log-likelihood (2006-2009) - -5198.4 -5166.1 -5151.2 -5147.3 -5111.9
AIC (2006-2009) - 10400.8 10340.2 10312.4 10312.6 10247.8

Tab. 2 - Relative change of occurrence rate Δλ/λ with changing explanatory variables
of model M5. For continuous variables FWI, population density and road density, the
change of the variable is equal to one standard deviation σ. (*): (Δλ/λ)i=exp[Δx(β2 + 2 β3

μRD + β3Δx)], with μRD=2.09 being the mean value of road density.

Explanatory variables Δx (Δλ/λ)i 
eqn. 4

FWI σ = 17.7 0.791
Population density σ = 316 -0.271
Road density

σ = 3.23 0.614 *
(Road density)2

Arable 1 -0.620
Permanent 1 0.382
Heterogeneous 1 -0.073
Forest 1 0.111
Shrub/Herbaceous 1 0.050
Open spaces 1 -0.172
Urban-Wet-Past 1 -0.695

Tab. 3 - Predicted fire occurrence rate at the locations of fires shown in Fig. 4.

Day in
2010

Fire 
locations

Fire occurrence rate (× 10-5 d-1 km-2)

M1 M2 M3 M4 M5
Oct 8 a 7.2 7.1 7.8 9.1 9.4

b 6.4 4.6 5.1 8.1 6.4
c 6.0 4.3 4.8 7.5 5.9
d 5.7 6.3 7.0 7.0 8.8
e 5.4 4.0 4.4 6.6 5.3

Jun 26 a 3.9 5.3 5.8 4.7 5.9
b 6.2 8.4 8.6 7.6 10.9
c 5.1 8.0 8.0 6.0 10.7

2010 log-likelihood 
in study area

-1388.6 -1383.2 -1388.7 -1380.6 -1377.1
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λ=exp[−10.90+0.0329⋅FWI +
0.3217⋅Road density−
0.0234⋅( Road density)

2
−

0.0010⋅Pop density−
0.9681⋅Arable+
0.3235⋅Permanent−
0.0760⋅Heterogeneous+
0.1057⋅Forest+
0.0486⋅Shrubs−
0.1882⋅OpenSpaces−
1.1863⋅Urban /Wet /Pastures ]
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the  likelihood  values  for  all  cells  and  all
days of the prediction data set. Model M5
predicts the highest log-likelihood for the
entire data of 2010 (Tab. 3), which indicates
that this model is the best in predicting fire
occurrence among all investigated models.

Two days in 2010 with the highest num-

ber of fires are selected to investigate and
demonstrate the prediction of the fire oc-
currence rate with the model  (whose pa-
rameters  were  learnt  by  data  for  2006-
2009). Fig. 4a shows the expected number
of  fires  as  predicted  by  the  models  on
October 8, 2010 – the day with the highest

number  of  fires  in  2010  (5  fires)  and  for
June 26, 2010. Urban centers are clearly vis-
ible in the maps as the areas with perma-
nent  low  expected  fires  predicted  by  all
models.

Models  M4  and  M5  generally  predict
higher  occurrence  rates  than  model  M1,
which  includes  only  the  influence  of  FWI
(Tab.  3).  However,  it  is  reminded  that  to
assess the predictive power of the model,
it is not sufficient to focus on the predic-
tion of fire occurrences. The prediction in
all  cells  must  be  compared.  To  this  end,
one  can  compare  the  probability  of  the
observed  fire  and  no-fire  events  in  the
entire area on all days in 2010 as predicted
by the models. This probability is equal to
the  likelihood  of  the  final  models  com-
puted with the 2010 data.

Since the likelihood is only a relative mea-
sure  of  prediction  performance,  addition-
ally receiver operating characteristic (ROC)
curves  are  computed  for  the  dataset  of
2010 and each model  M1-M5 (Fig.  5).  The
ROC curves are computed by  considering
the  binary  variable,  describing  whether  a
fire  occurred.  The  probability  of  one  or
more  fires  during  one  day  is  1  -  exp(-λ).
Model M5 has the biggest area under the
ROC curve, i.e., it performs best among the
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Fig. 4 - Expected occurrence rates of fires predicted by different regression models on (a) 8th October 2010 (day with maximum
number of fires in 2010) and (b) on 26th June 2010 (day with second maximum number of fires and largest resulted burnt area (3.4
km2 = 340 ha) in 2010). Black dots represent the registered fires on this day (a - e). The predictions are estimated by the models M1,
M2, M3, M4, M5. Occurrence rate results are in the order of 1e-5.

Fig. 5 - ROC curves
and AUC values (in
brackets) for mod-

els M1-M5.
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other models, whereas model M1 has the
lowest  AUC  and  performs  worse  among
the  models.  ROC  curves  are  worse,  and
AUC values are lower, when they are com-
puted  for  the  fine  spatial  resolution  em-
ployed here, as opposed to an analysis of a
larger area. However, this is a mathemati-
cal  artefact,  but  it  is  important  to realize
when comparing the values to other pub-
lished studies. In larger areas,  random ef-
fects are reduced, as follows from the law
of large numbers.  It  is  straightforward to
compute ROC curves for the entire study
area, since the fire occurrence rate is sim-
ply the sum of the occurrence rates in all
cells. The AUC values computed for predic-
tion in the entire study area in 2010 is 0.74.
This AUC value is the same for all models,
because  in  this  computation,  the  spatial
differentiation is lost.

Discussion
This study is a step towards an improved

prediction  of  fire  occurrence  in  the  Me-
diterranean for fire management purposes.
The  selected  probabilistic  modeling  ap-
proach  provides  a  quantitative  metric  of
the  ability  of  different  explanatory  vari-
ables  to  predict  daily  fire  occurrence.  Of
particular interest is the ability of the FWI,
which was developed for Canada,  to pre-
dict  fire  danger  in the Mediterranean.  As
we found in this study, the FWI is a good
indicator for fire danger also in the Eastern
Mediterranean, even if its prediction ability
is  lower  than  in  Canada  and  similar  cli-
mates.  In  previous  empirical  studies,  the
components  of  the  CFFWIS  (FFMC,  ex-
pressing fine fuel moisture; ISI, represent-
ing  relative  fire  spread expected  immedi-
ately  after  ignition;  and  BUI,  expressing
moisture  content  of  heavier  fuels)  were
found to be relevant indicators for predict-
ing people-caused fire occurrence in Cana-
da (Martell et al. 1987, Wotton et al. 2003).
FWI  was  here  chosen  to  express  fire
weather conditions as it proved to be more
expressive than the intermediated compo-
nents  of  the  CFFWIS.  A  likely  reason  for
this is that the studied fire events are the
ones registered and suppressed by the for-
est  fire  department.  It  can  be  thus  as-
sumed that not all ignited fires are included
in  the  data  set.  Since  the  included  fire
events are those that initiated a threat and
suppression efforts had to be undertaken,
the proposed model is potentially more rel-
evant for fire management planning. Nev-
ertheless,  the observed FWI values in the
study  area  are  mostly  in  a  limited  range
only (Fig. 3), which limits the ability of the
FWI  alone  to  discriminate  days  and  loca-
tions with high fire danger from those with
low  fire  danger.  This  indicates  that  there
might be potential in adjusting the defini-
tion of the FWI to local conditions. It may
also  be  investigated  if  selected  weather
parameters should be included as explana-
tory variables in addition to the FWI.

In agreement with previous studies (Car-
dille et al. 2001,  Pew & Larsen 2001,  Amat-

ulli  et  al.  2006,  Kalabokidis  et  al.  2007,
Syphard et al. 2008, Vilar et al. 2010, Padilla
&  Vega-García  2011,  Miranda  et  al.  2012,
Oliveira et al. 2012,  Martínez-Fernández et
al.  2013),  we found that including anthro-
pogenic  factors  as  explanatory  variables
can significantly improve the prediction of
fire occurrence. The comparison of differ-
ent models showed that a model with land
cover  types,  population  and  road density
has a significantly better predictive ability
than one based on FWI alone. Since such
data  is  readily  available,  it  is  straightfor-
ward to include it in forecasting systems.

Further  explanatory  variables  describing
anthropogenic factors may be included in
the  analysis  (see  also  Cardille  et  al.  2001,
Oliveira et al. 2012,  Martínez-Fernández et
al.  2013).  However,  care  should  be  taken
not  to  introduce  redundant  variables.  Al-
ready the three included explanatory vari-
ables  (land  cover  type,  population  and
road  density)  are  partly  redundant  and
inter-dependent, e.g., both population and
road density are higher in urban areas. This
dependency  must  be  considered  when
transferring the model to other regions.

Due  to  the  randomness  of  fire  occur-
rence,  there is  a  limitation to any predic-
tion. This is evident in the results presented
in  this  paper.  Consider  the  predicted  fire
occurrence  rate  at  locations  and  days
where fires occurred, shown in Tab. 3: the
rates  predicted with the best  models  are
approximately double the average rate of
fires in the study area (5.5·10-5 day-1 km-2).
Therefore, while the developed models are
able  to  identify  days  and  locations  with
higher  fire  risks,  they  are  not  –  and  of
course will  not  –  be able to  deterministi-
cally  predict  fire  occurrences  in  advance.
Nevertheless, the predictions can support
the planning of preventive and mitigating
measures.  Importantly,  they also improve
the understanding of influential factors.

Conclusions
A probabilistic model was developed for

predicting fire occurrences in the Mediter-
ranean based on readily available data on
weather  conditions,  human presence and
land  cover  at  the  mesoscale.  The  model
was  learned  with  data  from  Cyprus.  In
agreement  with  existing  forecasting  sys-
tems,  components  of  the  CFFWIS  are
included to represent daily weather condi-
tions.  Among  these  components,  FWI
proved to express best the conditions fa-
voring  relevant  fires.  The  final  model  in-
cluding  environmental  and  social  factors
was  shown  to  provide  improved  predic-
tions compared to a forecast based solely
on FWI.
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Fig. S1 -  Interpolated weather parameters
on 8th October 2010. (a) wind speed (km
h-1), (b) temperature (°C), (c) relative hum-
idity (%). 

Fig. S2 - Estimated components of the Ca-
nadian  Forest  Fire  Weather  Index system
on 8th October 2010. (a) Fine Fuel Moisture
Code  (FFMC),  (b)  Duff  Moisture  Code
(DMC),  (c)  Drought  Code (DC),  (d)  Initial
Spread Index (ISI), (e) Buildup Index (BUI),
(f) Fire Weather Index (FWI). 

Fig. S3 - Daily values of Fire Weather Index
(FWI),  precipitation  (mm)  and  noon  dry-
bulb temperature (°C) at  Paphos weather
station,  and  daily  number  of  fire  occur-
rences in the investigated area in 2006. 

Fig.  S4 -  Observed mean occurrence rate
(Nr.Fires day-1  km2) conditional on (a) FWI,
(b)  Population  density,  (c)  Road  density
and (d) Land cover types for 2006-2010.

Tab.  S1 -  Data  types,  resolution  and
sources. 

Tab. S2 - Alternative models with explana-
tory  variables  and  estimated  parameters
(2006-2009).
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