
Research Article - doi: 10.3832/ifor1221-007 ©iForest – Biogeosciences and Forestry

Introduction
Carbon storage in forest ecosystems invol-

ves carbon in biomass and soil.  Interest  in
the ability of forest soils to sequester atmo-
spheric  CO2 derived  from fossil  fuel  com-
bustion has recently increased because of the
threat of climate change (Lal 2005). There-
fore, understanding the mechanisms and fac-
tors  of  organic  carbon  dynamics  in  forest
soils is important for identifying and enhan-
cing natural sinks for carbon sequestration,
in  order  to  mitigate  the  effects  of  climate

change (Lal 2005). The key factors in esti-
mating  the  potential  for  organic  matter  in
soil to act as a source or sink of CO2 are the
size of the carbon flux into and out  to  the
soil pool, and the residence time of organic
matter in the soil (Silver et al. 2000). In rela-
tion to the second factor, it is critical to un-
derstand how texture and mineralogy influ-
ence the residence time of carbon in forest
soils.  Besides the key role in  belowground
carbon storage in forest ecosystems, soil tex-
ture strongly influences the availability and

retention of nutrients,  particularly in highly
weathered soils (Telles et al. 2003).

Texture refers to the size and distribution
of primary soil particles and it is the relative
proportion of sand (2-0.05 mm), silt (0.05-
0.002 mm), and clay (< 0.002 mm) in a gi-
ven soil, inherited from the parent materials.
Soil  texture, which originates through wea-
thering  and  pedogenetic  processes  (Osman
2013),  is not  usually changed by land  ma-
nagement practices, but it may be altered by
erosion, deposition,  truncation,  landfill,  etc.
(Buttafuoco et al. 2012, Osman 2013).

Standard  methods for  determining texture
in soils are either the pipette method or the
hydrometer method, which are both conduc-
ted  manually,  being  hence  labor  intensive
and time-consuming.

Reflectance  spectroscopy  in  the  visible,
near infrared (Vis-NIR, 350-2500 nm) spec-
tral  region  could  be an alternative to  stan-
dard  laboratory  methods,  even  though  soil
Vis-NIR  spectra  are  largely  non-specific,
quite weak and broad due to overlapping ab-
sorptions of soil  constituents,  often present
at small concentrations in the soil (Viscarra
Rossel & Behrens 2010). The method is ba-
sed on the simplified assumption that the soil
reflectance in the 350-2500 nm spectral re-
gion is a linear combination of the spectral
signatures  of its compositional  components
weighted by their abundance (Curran 1994,
Ben-Dor 2002,  Ge et  al.  2007).  Therefore,
changes in chemical, physical and mineralo-
gical properties of the soil  produce distinct
spectral  features  detectable  through  reflec-
tance spectroscopy (Ehsani et al. 1999, Leo-
ne  &  Sommer  2000,  Shepherd  &  Walsh
2002, Nanni & Demattê 2006, Viscarra Ros-
sel et al. 2006, Aïchi et al. 2009, Conforti et
al. 2012, Conforti et al. 2013a, 2013b).

Vis-NIR spectroscopy requires only a few
seconds to measure a soil sample, but the re-
flectance spectra are largely non-specific due
to interference from the overlapping spectra
of soil  constituents  that  are themselves va-
ried and interrelated (Viscarra Rossel & Mc-
Bratney  2008).  Consequently,  the  relevant
information needs to be mathematically ex-
tracted from the spectra and correlated with
soil  properties.  Generally,  chemometric  te-
chniques  and  multivariate  calibrations  are
used to this purpose (Martens & Naes 1989,
Viscarra Rossel & Behrens 2010,  Stenberg
et al. 2010), such as multiple linear regres-
sion  (MLR),  principal  components  regres-
sion  (PCR),  partial  least-squares  regression
(PLSR) and artificial neural networks (ANN
-  Chang  et  al.  2001,  Shepherd  &  Walsh
2002,  Udelhoven  et  al.  2003,  Yang  et  al.
2003, Viscarra Rossel et al. 2006, Farifteh et
al. 2007,  Aïchi et al. 2009,  McDowell et al.
2012).

Examples of the application of visible and
near infrared spectroscopy for predicting soil
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Texture is a primary variable affecting the total amount of carbon stock in the
soil. The standard methods for determining soil texture, however, are still con-
ducted manually and are largely time-consuming. Reflectance spectroscopy in
the visible, near infrared (Vis-NIR, 350-2500 nm) spectral region could be an
alternative to standard laboratory methods. The aim of this paper was to de-
velop calibration models based on laboratory Vis-NIR spectroscopy and PLSR
analysis to estimate the texture (sand: 2-0.05 mm; silt: 0.05-0.002 mm; clay:
<0.002 mm) in a forest area of southern Italy. An additional objective was to
produce continuous maps of sand,  silt  and clay through a geostatistical  ap-
proach. Soil samples were collected at 235 locations in the study area, and
then dried, sieved at 2 mm and analyzed in laboratory for soil texture and Vis-
NIR spectroscopic measurements. Spectra showed that soil samples could be
spectrally separable on the basis of classes of texture. To establish the rela-
tionships between spectral reflectance and soil texture (sand, silt and clay)
partial least squared regression (PLSR) analysis was applied to 175 soil samples,
while the remaining 60 samples were used to validate the models. The opti-
mum number of factors to be retained in the calibration models was deter-
mined by leave-one-out cross-validation. Results of cross validation of calibra-
tion models indicated that the models fitted quite well and the values of  R2

ranged between a minimum value of 0.74% for silt and a maximum value of
0.84 for sand content. Results for validation were satisfactory for sand content
(R2=0.81)  and  clay  content  (R2=0.80)  and  less  satisfactory  for  silt  content
(R2=0.70). Geostatistics coupled with Vis-NIR reflectance spectroscopy allowed
us to produce continuous maps of sand, silt and clay, which are of critical im-
portance for understanding and managing forest soils.

Keywords:  Forest  Soils,  Soil  Texture,  Vis-NIR  Spectroscopy,  Geostatistics,
Southern Italy
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clay content only, or the three textural frac-
tions  in  soil  (sand,  silt  and  clay)  can  be
found  in  Viscarra  Rossel  &  McBratney
(1998),  Sørensen  &  Dalsgaard  (2005),
Mouazen et al.  2005,  Waiser et al.  (2007),
Wetterlind  et  al.  (2008),  Bricklemyer  &
Brown (2010),  Conforti et al. (2013b),  Cur-
cio et al. (2013),  Knadel et al. 2013, among
others.

The representation of variability of textural
fractions (sand,  silt,  and clay)  is of critical
importance for understanding and managing
forest  soils.  Since such fractions  are deter-
mined only at sampled locations, there is the
need to couple the multivariate calibrations
approach with geostatistical analysis to pro-
duce accurate continuous maps. Geostatisti-
cal methods (Matheron 1971) provide a va-
luable tool to study the spatial pattern of tex-
tural  fractions,  taking  into  account  spatial
autocorrelation of data to create mathemati-
cal models of spatial  correlation structures,
commonly expressed by variograms. The in-
terpolation technique of textural fractions at
unsampled locations, known as kriging, pro-
vides the “best”, unbiased, linear estimate of
a regionalized variable in an unsampled lo-
cation,  where  “best”  is  defined  in  a  least-
square sense (Chilès & Delfiner 2012).

The main objective of this paper was to de-
velop, separately for each soil textural frac-
tion, calibration models based on laboratory
Vis-NIR spectroscopy and PLSR analysis in
a forest  area of southern  Italy.  An additio-
nal objective was to use a geostatistical ap-
proach  to  map the  three soil  textural  frac-
tions (sand, silt and clay).

Material and methods

Study area
The study area is a high beech (Fagus syl-

vatica L.)  forest  of 332 000  m2,  located in
the  Serre  Massif  (southern  Italy  -  Fig.  1)
from 16° 14′ 10″ E to 16° 14′ 42″ E of longi-
tude and 38° 30′ 7″ N to 38° 29′ 31″ N of
latitude. Elevation ranges from 1155 to 1205
m a.s.l. Slope ranges between 0 to about 45°,
whereas the average slope is 10°.

The  climate  is  typical  Mediterranean  up-
land (Csb, sensu Köppen 1936) with a long-
term (1928-2012) average annual  precipita-
tion of 1810 mm over 110 rainy days, and an
average mean annual temperature of 11.3 °C.
Yearly rainfall  distribution  exhibits  a  peak
from November to February when more than
60% of total annual precipitation occurs.

Concerning the pedoclimate, the study area
has a mesic soil temperature regime associa-
ted with an udic soil moisture regime (AR-
SSA 2003).

The geology of the area is characterized by
Palaeozoic  granitoid  rocks deeply fractured
and weathered,  frequently covered by thick
regolith  and/or  colluvial  deposits  (Borsi  et
al. 1976,  Calcaterra et al. 1996). Morpholo-
gically,  the  study  area  is  dominated  by  a
mountains  landscape  with  deep,  V-shaped
valleys  and  top  paleosurfaces,  representing
the residual flat or gently-sloping highlands,
often  separated  by  steep  slopes  (Sorriso-
Valvo 1993, Calcaterra & Parise 2010).

Soils are relatively young, from poorly to
moderately  differentiated,  and  heavily  de-
pendent on the nature of the parent rock and

the climatic conditions. Based on the USDA
(2010) soil  classification,  most  of  the  soil
types belong to Entisol and Inceptisol orders
(ARSSA 2003). The soil depth ranges from
shallow to  moderately deep  (0.20  to  1  m)
with profiles characterized by A-Bw-Cr hori-
zons and/or A-Cr horizons (ARSSA 2003).
Moreover,  the  upper  A  horizon  (Umbric
epipedon -  USDA 2010) shows a very dark
brown color due to the accumulation of or-
ganic matter.

Soil sampling
Soil  samples  were  collected  in  October

2012 at 235 locations within the study area
(Fig. 1a). Soil depth sampling was set at 0.20
m, measured from the base of organic hori-
zons,  which  were  removed.  Soil  was  sam-
pled in a metallic core cylinder with a dia-
meter of 7.5 cm and height of 20 cm (883.6
cm3).  Sampling locations  were geo-referen-
ced by a differential global positioning sys-
tem (DGPS) with a precision of about 1 m.

Texture analysis
Prior  to  the texture  analysis  and Vis-NIR

spectroscopic  measurements,  samples  were
oven dried at 45 °C for 48 hours in the labo-
ratory, then gently crushed in an agate mor-
tar to break up larger aggregates, afterward
the  visible  roots  were  removed  and  each
sample  was  sieved  at  2  mm, homogenized
and quartered.  Such  procedures  allowed  to
homogenize the moisture and roughness  of
the soil samples, reducing their effect on the
spectroscopic measurements.

The  relative  proportion  of  sand  (2-0.05
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Fig. 1 - (a) Study area and 
soil sampling locations; (b) 
soil textural triangle of the 
percentages of sand (2-0.05 
mm), silt (0.05-0.002 mm) 
and clay (< 0.002 mm).
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mm), silt (0.05-0.002 mm), and clay (<0.002
mm) content was determined through the hy-
drometer method, after a pre-treatment with
sodium hexametaphosphate  as  a  dispersant
(Patruno et al. 1997). Then the texture was
classified in accordance with the soil texture
triangle of the United States Department of
Agriculture (USDA 2010 - Fig. 1b).

Laboratory Vis-NIR spectroscopy
The soil samples sieved at 2 mm were pla-

ced in 9 cm diameter petri dishes and mea-
sures were taken in a black room (to better
control  irradiance conditions) with an ASD
FieldSpec IV 350-2500 nm spectroradiome-
ter (Analytical Spectral Devices Inc.,  Boul-
der, Colorado, USA). The instrument combi-
nes three spectrometers to cover the solar re-
flected portion of the spectrum between 350
and 2500 nm, with a sampling interval of 1.4
nm for the 350-1000 nm region and 2 nm for
the  1000-2500  nm  region.  FieldSpec  IV
spectra were collected with a resolution of 1
nm, thus producing 2151 spectral bands.  A
50-Watts halogen lamp with a zenith angle
of 30°,  located at a distance of approxima-
tely 25 cm from the soil sample was used as
artificial illumination. The spectroradiometer
was located in a nadir position at a distance
of 10 cm from the sample, allowing radiance
measurements to be carried out within a cir-
cular area of approximately 4.5-cm diameter.
To minimize the noise level in the spectral
signal, each soil  reflectance spectra was re-
corded as the average of 50 scans carried out
consecutively.  In  addition,  to eliminate any
possible spectral anomalies due to geometry
of measurement, and minimize the possible
errors  associated with  stray light,  the  mea-
sure was repeated 4 times, by rotating each
sample 90 degrees (0, 90, 180 and 270 de-
grees) and the results averaged in post-pro-
cessing.

A Spectralon panel (20 × 20 cm2, Labsphe-
re  Inc.,  North  Sutton,  USA)  was  used  as
white  reference  to  compute  reflectance  va-
lues.  Under  the  same  measurement  condi-
tions a reference spectrum was acquired im-
mediately before the first scan and after eve-
ry set of five samples.

The average reflectance curves were trans-
lated from binary to  ASCII  with  the  VIEW-
SPECPRO software (Analytical  Spectral  Devi-
ces, Inc.,  Boulder, CO, 80301) and re-sam-
pled each 10 nm by reducing the number of
wavelengths from 2151 to 216. Resampling
smooths the spectra and reduces the risk of
over-fitting (Kemper & Sommer 2002,  She-
pherd & Walsh 2002).

Multivariate statistical analysis
Before  performing  quantitative  statistical

analysis,  spectral  data  pre-processing  was
performed to reduce noise and enhance the
absorption  frequencies  (Martens  &  Naes
1989, Næs et al. 2004). The measured reflec-

tance (R) spectra were transformed in absor-
bance through log(1/R) to reduce noise, off-
set effects, and to enhance the linearity be-
tween the measured absorbance and soil pro-
perties. The absorbance spectra were mean-
centered to ensure that all results would be
interpretable in terms of variation around the
mean. Spectra were then smoothed using a
Savitzky-Golay filter  algorithm,  with  a  se-
cond order polynomial and a window size of
three, and transformed as first derivative to
remove an additive baseline (Viscarra Rossel
2008).

Partial  least  squares  regression  (PLSR  -
Geladi  & Kowalski  1986),  a common che-
mometric method in Vis-NIR analysis (Mar-
tens  &  Naes  1989,  Viscarra  Rossel  et  al.
2006), was chosen from the available multi-
variate statistical methods.  The idea behind
PLSR is to  find  a few linear  combinations
(components  or  factors)  of  the  original  X-
values (spectral data) and to use only these
combinations  in  the  regression  equation
(Næs et al. 2004). In this way, the irrelevant
and  unstable  information  is  discarded  and
only the most relevant part  of the X-varia-
tion is used for regression; thus the problem
of collinearity is solved and more stable re-
gression equations are obtained (Næs et al.
2004). PLSR reduces the Vis-NIR matrix to
a  small  number  of  statistically  significant
components. PLSR is based on latent varia-
ble decomposition of two sets of variables:
the set X of predictors (matrix n × N, where
n is the number of observations and N is the
number of wavelengths) and the set y of re-
sponse variable (vector n × 1 of sand or silt
or clay). The latent variables, which are or-
thogonal  factors maximizing the covariance
between independent (X) and dependent va-
riables (y), explain most of the variation in
both predictors  and responses.  The optimal
number of latent variables was chosen by a
one-at-a-time cross-validation as the number
that minimizes the predicted residual sum of
squares.

Pre-treatment  of  data  and  the  PLSR pro-
cedure were performed using the PARLES v.
3.1 software package developed by Viscarra
Rossel (2008).

To test  the accuracy of the PLSR regres-
sion models the dataset was randomly split
into two subsets:  the calibration set  (inclu-
ding 175 samples,  i.e., 75% of the total da-
taset)  for  developing  the  prediction  model,
and the validation set (including 60 samples,
i.e.,  25% of the total dataset) to test the mo-
dels’ accuracy.

To split  the  data  randomly into  two sub-
sets, a value between 0 and 1 was generated
simulating  a  uniform  distribution  in  each
sampling  location.  Then,  by  selecting  the
generated values greater than 0.75 a calibra-
tion set was created which included 75% of
samples chosen randomly from the data. The
complementary  selection  (values  less  than

0.25)  was  included  in  the  validation  set
(25% of samples).

Leave-one-out  cross-validation  was  used
(Efron & Tibshirani 1993) to test the predic-
tive  significance  of  each  PLSR component
and to determine the number of factors (la-
tent variables) to be retained in the calibra-
tion model. With the leave-one-out cross-va-
lidation one sample is left out of the global
dataset and the model is calculated on the re-
maining data points. The value for the left-
out sample is then predicted and the predic-
tion  residual  computed.  The  above  proce-
dure is repeated until every sample has been
left out once. To check the goodness of pre-
diction of the leave-one-out cross-validation
models, the coefficient of determination (R2)
and the root mean square error (RMSE) were
used. The best result for cross validation was
considered  that  showing  the  lowest  RMSE
and the highest R2.

The  models  were  independently  tested
through  the  validation  set,  and  the  coeffi-
cient  of  determination  (R2

val)  and  the  root
mean square error (RMSEval) were computed
to check the goodness of prediction.

Geostatistical approach
To  produce  accurate  continuous  maps  of

each  soil  textural  fraction,  both  measured
and spectrally predicted values of sand, silt
and clay were modeled as an intrinsic statio-
nary process using a geostatistical approach
(Chilès  & Delfiner  2012).  The quantitative
measure of their spatial correlation was the
experimental  variogram  γ(h),  which  is  a
function  of  the  distance vector  (h)  of  data
pairs values separated by a lag vector h.  A
theoretical function, called variogram model,
was  fitted  to  the  experimental  variogram
with the aim of building a model that cap-
tures the major spatial features of the attri-
bute under study.  The variogram model re-
quires two main parameters: range and sill.
The range is the distance over which pairs of
the three soil  texture  fractions are spatially
correlated,  while  the  sill  is  the  variogram
value  corresponding  to  the  range.  Optimal
fitting was chosen on the basis of cross-vali-
dation,  which  checks  the  compatibility  be-
tween  the  data  and  the  model  considering
each data point in turn,  removing it tempo-
rarily from the data set and using neighbo-
ring information to predict the value of the
variable  at  its  location. Goodness-of-fit  for
the model was based on the mean error (ME)
and the mean squared deviation ratio (MSDR
-  Webster & Oliver 2007).  ME values close
to zero indicate unbiased estimates, whereas
MSDR values close to 1 indicate a high mo-
del accuracy.

The  fitted  variograms  for  both  measured
and spectrally predicted values of sand, silt
and clay were used to predict their values at
the nodes of a 1 × 1 m interpolation grid by
ordinary kriging (Webster  & Oliver  2007).
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For  more  details,  see  Goovaerts  (1997),
Chilès & Delfiner (2012), Webster & Oliver
(2007), Wackernagel (2003).

All  statistical  and  geostatistical  analyses
were performed using the software package
ISATIS®, release 2013.3 (http://www.geovari-
ances.com). 

Results and discussion
The basic statistics for sand, silt and clay of

exhaustive,  calibration  and  validation  sets
are reported in  Tab. 1. The sand content for
the exhaustive data set ranges from 17.2 to
81.1 %, with a mean value of 42.6 %. Most
soil  samples have a moderate to  high sand
content and are generally poor in clay (Tab.
1). The silt content varies from 15.6 to 69.8
%, with a mean value of 45.6 %, while clay
content  ranges  from 2.8  to  23  %,  with  a
mean value of 11.5 %. Frequency distribu-
tion of the data appears quite symmetric, as
revealed by the low values of skewness (Tab.
1).

From the soil texture triangle (Fig. 1b), it
appears that soil samples can be mainly clas-
sified as sandy loam, loam and silt loam. In
addition,  Tab.  1 shows  that  basic  statistics
for sand, silt and clay in the exhaustive, cali-
bration and validation sets are very similar.

Spectral data analysis and PLSR 
prediction models for classes of soil 
texture

The Vis-NIR reflectance spectra of all soil
samples shows the typical pattern for diffe-
rent  wavelength bands responding to  diffe-
rent chemical and/or mineralogical composi-
tions or molecular groups (Demattê & Terra
2014). In particular, reflectance is generally
lower in the visible range (400-700 nm) and
higher  in  the  near  infrared  (700-2500  nm)
region,  with  three  major  specific  bands
around at  1400,  1900 and 2200 nm. These
features  can  be  associated  with  clay mine-
rals, OH features of free water at 1400 and
1900  nm,  and  lattice  OH features  at  1400
and 2200 nm (Ben-Dor 2002, Viscarra Ros-
sel et al. 2006). In addition, the spectra sho-
wed a  small  reflectance peak around  2200
nm, which may be due to organic molecules
(e.g.,  CH2,  CH3,  and  NH3),  SiOH  bonds,
cation  OH bonds in  phyllosilicate  minerals
(e.g., kaolinite, montmorillonite - Clark et al.
1990).

Results of the visual inspection of spectral
curves showed that variations in reflectance
intensity and shape of the spectral curves can
be due to differences in soil texture due to
the  correlation  between  the  shape  of  NIR
spectra  and  soil  texture  (Mouazen  et  al.

2005). Fig. 2 shows the mean spectral curves
for different soil texture classes. Reflectance
was relatively high for soils with loamy sand
texture with over 70% sand content (Fig. 1).
This was probably due to the high amount of
quartz in the sand fraction, which raised the
intensity of spectral reflectance (White et al.
1997).  Conversely,  the  soil  reflectance  de-
creased when clay content  dominated  from
phyllosilicates increased (Hill 1994,  Palaci-
os-Orueta & Ustin 1998) and, consequently,
the organic  carbon  content  increased (Sch-
wanghart  &  Jarmer  2011,  Conforti  et  al.
2013a). Therefore, organic carbon is an im-
portant property as regards spectral behavior
(Stoner  &  Baumgardner  1981,  Ben-Dor  et
al. 1999, Schwanghart & Jarmer 2011, Con-
forti et al. 2013a). Generally, the reflectance
of soil was found to be relatively low on ac-
count of the high content of organic carbon,
throughout the Vis-NIR spectral domain.

Cross-validation  results  of the PLSR mo-
dels for the three classes of texture are dis-
played  in  Fig.  3a.  The  prediction  factors
used in the calibration  models,  selected on
the basis of the best cross validation results
(lowest  RMSE and the highest  R2), were 12
for sand, 10 for silt and 9 for clay. Values of
R2 ranged between a minimum value of 0.74
for  silt  and  a  maximum value  of  0.84  for
sand,  indicating  that  the  models  fit  quite
well.

The validation of the models (Fig. 3b) gave
satisfactory  results  for  sand  content  (R2  =
0.81) and clay content (R2  = 0.80), but less
stisfactory for silt (R2 = 0.70). Moreover, our
results  were  in  agreement  with  those  ob-
tained  from the  cross-validation  prediction
model,  and from many other studies as well
(Viscarra Rossel et al. 2006,  Volkan Bilgili
et al. 2010, Vendrame et al. 2012, Curcio et
al. 2013).

Modeling of spatial dependence and 
mapping of classes of soil texture

In the analysis of both measured and spec-
trally predicted sand, silt and clay contents,
no anisotropy was evident in the 2-D vario-
gram maps (not  shown)  up  to  a  maximum
lag distance of 450 m. Subsequently, a boun-
ded  isotropic  nested  variogram model  was
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Fig. 2 - Mean re-
flectance spectra for
different soil texture

classes.

Tab. 1 - Descriptive statistics of the exhaustive, calibration and validation data sets for the soil textural fractions.

Textural 
fractions

Data set Count
Mean
(%)

Median
(%)

Minimum
(%)

Maximum
(%)

Standard 
deviation (%)

Skewness

Sand
(2-0.05 mm)

Exhaustive 235 42.6 42.3 17.2 81.1 11.4 0.55
Calibration 175 42.5 42 17.2 81.1 11.9 0.55
Validation 60 43 43.1 23.2 72.4 9.8 0.55

Silt 
(0.05-0.002 mm)

Exhaustive 235 45.9 46 15.9 69.8 9.7 -0.41
Calibration 175 46.1 47 15.9 69.8 9.9 -0.51
Validation 60 45.3 44.1 20.6 66 8.9 -0.06

Clay 
(< 0.002mm)

Exhaustive 235 11.5 11.2 2.8 23 3.6 0.23
Calibration 175 11.5 11.2 2.8 23 3.6 0.21
Validation 60 11.7 11.2 3.7 20.2 3.5 0.32
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fitted  for  each  experimental  variogram.  In
the nested model, three basic structures (Tab.
2) were combined to include a nugget effect,
a spherical model (Webster & Oliver 2007)
at short range and a spherical model at lon-
ger range. The nugget effect is a positive in-
tercept of the variogram and arises from er-
rors  of  measurement  and  spatial  variation
within the shortest sampling interval (Web-
ster  &  Oliver  2007).  The  spherical  model
(Webster & Oliver 2007) is given by (eqn.
1):

where c is the sill and a the range.
The  presence  of  two  ranges  (short  and

long) in the nested model of the variogram
means that the physical processes responsi-
ble for the variation of soil  texture operate
and interact at two spatial  scales:  the short
range at about 40-50 m and the longer range
at 280-300 m.

Cross-validation  of  the  variogram models
reported  in  Tab.  2 revealed satisfactory re-
sults, in terms of ME and MSDR (close to 0
and 1,  respectively -  data  not  shown).  The
fitted variogram models were then used with
ordinary  kriging  to  produce  the  maps  of
sand, silt and clay contents for the measured

and spectrally predicted data (Fig. 4). Such
maps  showed a reasonable spatial similarity,
with  high  and  low  values  matching  well
(Fig.  4).  High  sand  and  low  clay  content
were observed in the upper part of the slopes
characterized  by  low  gradient  slope  and
poorly developed soils. Conversely, low va-
lues of sand and high content of fine parti-
cles (silt and clay) were prevalently observed
along the foot  of slopes and/or  in  concave
areas where soils are deeper and more deve-
loped and, consequently, contain high levels
of organic carbon.

Comparing the interpolated maps of mea-
sured  and  spectrally  predicted  soil  texture
fractions,  it  is apparent  that the PLSR pre-
dictions  provided  a  good  representation  of
the spatial pattern for sand, silt and clay con-
tent (Fig. 5). Moreover, as a spatial measure
of  prediction  accuracy,  maps  of local  mis-
match were computed as the difference be-
tween the maps of measured and spectrally
predicted values (Fig.  5). For sand content,
35.2% of the pixels were overestimated and
64.8%  were  underestimated,  with  a  mean
difference between measured and spectrally
predicted  sand  content  of  0.64%  (min.
-8.5%, max. 8.6%). For silt content, 71.6%
of the pixels were overestimated and 28.4%
were underestimated, with a mean difference
between  measured  and  spectrally  predicted
silt  content  of about  -0.95% (min.  -11.7%,

max.  10.1%).  As regards  the  clay content,
overestimated pixels were 71.8% and 28.2%
were  underestimated;  the  mean  difference
between  measured  and  spectrally  predicted
clay content was about -0.30% (min.  -2.4%,
max. 2.6%).

Based on the above results, it is clear that
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Fig. 3 - Scatter-plots of predicted vs. measured soil textural fractions for the calibration (a) and validation (b) data sets. ( R2): coefficient of
determination; (RMSE): root mean square error.

Tab.  2 -  Variogram model  parameters  for
the values of measured (meas) and spectrally
predicted (pred) textural fractions.

Variable Model
Range

(m)
Sill
(%)

Sandmeas Nugget - 38
Spherical 44.06 64.91
Spherical 290.06 26.05

Siltmeas Nugget - 40.39
Spherical 46.85 42.17
Spherical 279.6 11.64

Claymeas Nugget - 4.39
Spherical 40.79 6.34
Spherical 296.32 2.12

Sandpred Nugget - 31.24
Spherical 52.98 54.75
Spherical 291.37 32.99

Siltpred Nugget - 21.42
Spherical 54.8 40.02
Spherical 305.45 17.19

Claypred Nugget - 3.99
Spherical 38.78 4.6
Spherical 243.76 3.32

γ (h)={c[ 3
2

h
a
−

1
2 (h

a )
3

] if h⩽a

c if h>a
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Fig. 4 - Maps of measured 
(left) and spectrally pre-
dicted (right) values for 
sand (top panels), silt (mid-
dle panel) and clay (bottom
panels) content in the soil 
of the study area. Map geo-
graphic coordinates are re-
ferred to the UTM zone 
33N.
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the maps of texture fractions could be used
to aid land management decisions; in parti-
cular, maps of sand content could be used to
identify areas with high drainage and those
prone to accelerated nutrient leaching (Lam-
sal & Mishra 2010).

Conclusions
This  study  confirmed  that  soil  Vis-NIR

(350-2500  nm)  reflectance  spectra  contain
valuable information for predicting soil tex-
tural fractions (sand, silt, and clay content).
Chemometrics  techniques  and  multivariate
calibration  (PLSR)  allowed  researchers  to
extract the relevant information from the re-
flectance spectra  and to  correlate  this  with
the soil texture fractions.

Results  from cross  validation  of  the  cali-
bration models revealed a quite good fitting,
with  R2 varying  from a minimum value  of
0.74% for silt to a maximum value of 0.84
for sand content. Also for validation, the re-
sults were satisfactory for sand content (R2 =
0.81) and clay content (R2  = 0.80) and less
satisfactory for silt content (R2  = 0.70). Our
results  were  in  agreement  with  those  ob-
tained  from the  cross-validation  prediction
model, and from many other studies as well.

In  conclusion,  reflectance spectroscopy in
the  visible,  near  infrared  (350-2500  nm)
spectral region proved to be a useful alterna-
tive to laboratory standard methods for de-
termining the soil textural fractions. By cou-
pling the reflectance spectroscopy approach
with geostatistical analysis, map of the spa-
tial pattern for soil texture fractions were ob-
tained, which can be used for better under-
standing and managing forest soils.
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