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Analyzing regression models and multi-layer artificial neural network 
models for estimating taper and tree volume in Crimean pine forests

Abdurrahman Șahin The taper and merchantable tree volume equations are the most used models 
in forestry because of their accuracy in estimating both total and merchant-
able tree volume. However, numerous studies reported that artificial neural 
network models show fewer errors and a greater success rate as compared to 
regression models. This study used data from 200 Crimean pine trees in Tur-
key’s Central Anatolia and Mediterranean Region to assess the performance of 
artificial neural network (ANN) models and the Max-Burkhart’s equation for es-
timating taper and merchantable tree volume. The most accurate results were 
obtained using 3 hidden layers and 10 neurons in the taper model and 1 hid-
den layer and 100 neurons in the volume model. The hyperbolic tangent sig-
moid function was used for the ANN analysis and hyper-parameter customiza-
tion. Using the ANN model with hyper-parameter customization, the AAE in the 
Max-Burkhart taper model decreased from 9.315 to 6.939 (-25.5%), the RMSE 
decreased from 3.072 to 2.656 (-13.5%), and the FI increased from 0.964 to 
0.966 (+1.23%).  Similarly,  using  the ANN model  with  hyper-parameter  cus-
tomization, the AAE in the Max-Burkhart volume model decreased from 0.056 
to 0.013 (-76.6%), the RMSE decreased from 0.247 to 0.12 (-51.6%), and the FI 
increased from 0.909 to 0.979 (+7.69%).  Our results  showed that the ANN 
models’ predictions were more accurate and reliable compared to the Max-
Burkhart’s equations. We resolved overfitting  via  hyper-parameter modifica-
tion, which also allowed for monitoring the impact of error and prediction out-
puts at various learning rates. It was also possible to develop tree taper and 
volume equations with lower error rates in both training and validation data, 
consistent with tree growth trends in both data sets.

Keywords: Compatible Tree Taper, Merchantable Volume Equations, Crimean 
Pine, Multilayer Artificial Neural Network, Hyper-parameter Customization

Introduction
The  estimation  of  the  growing  stock  is 

very important for the best forest manage-
ment and the optimization of derived prod-
ucts  (Davis  et  al.  2001).  Single-tree  traits 
measurements  like  diameter  at  breast 
height (DBH), total tree height (TTH), and 
volume are critical in forest inventory stud-
ies (Loetsch et al.  1973). Accurate estima-
tion of merchantable tree volume is essen-
tial  for  long-term  sustainability,  manage-

ment  of  growing  stock  resources,  opera-
tional  forestry,  and  scientific  research 
(Kozak 2004). For these reasons, it is cru-
cial  to accurately calculate the volume of 
single trees, both in the context of forestry 
inventory  and  in  the  scope  of  scientific 
study.

Forest  managers  are  required  to  deter-
mine the volume of standing trees that can 
be marketed without logging. To this aim, 
many methods (single or double-entry tree 
volume tables, yield tables, etc.) have been 
suggested and used to estimate merchant-
able  tree  volume  (Loetsch  et  al.  1973). 
However,  the individual  tree volume can-
not be determined directly using analytical 
methods since the tree stem that makes up 
the  merchantable  tree  volume  does  not 
precisely  reflect  known geometric  shapes 
such as cylinder, paraboloid, cone, or niloid 
(Loetsch et  al.  1973,  Trincado & Burkhart 
2006). Allometric models are often used to 
estimate the total tree volume (TTV), con-
sidering  the  DBH  (d1.3  m)  and  the  total 
height of the trees (Cutini et al. 2013). How-
ever, according to Tang et al. (2016), these 
models  cannot  estimate  TTV  up  to  any 
height limit or saleable quantities up to any 
height  or  diameter  restriction.  Foresters 
should also make estimations of the stem 

diameter at various heights along the bole 
for predicting the variety of wood products 
(De-Miguel et al. 2012), and taper equations 
have  been  well-developed  to  solve  such 
problems. Taper equations do not only de-
scribe  the  stem  shapes  but  also  provide 
the  estimation  of  various  wood  product 
types  and  assortments,  such  as  the  mer-
chantable volume or individual volume for 
logs between two different heights (Kozak 
1988). When used in combination with ac-
tual  volume  prediction  systems,  these 
equations also provide volume predictions 
at the dominant height limit and through-
out  the  entire  tree  height  (Kozak  2004, 
López-Sánchez et al. 2016).

Taper equations have long been studied 
in  forestry  research,  and  can  be  divided 
into two general classes. In the first group 
of equations, the tree shape is represented 
as a single continuous function (Newnham 
1992, Kozak 1988, 2004). The second group 
of equations (segmented polynomial taper 
equations - SPTEs) calculates the TTV using 
different models for different parts of the 
tree stem, such as the niloid, cylinder, pa-
raboloid, and cone (Max & Burkhart 1976). 
Using  a  relative  diameter  or  height  func-
tion,  volume  ratio  equations  can  predict 
merchantable  volume as  a  percentage of 
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the  TTV  (Tang  et  al.  2016).  SPTE  models 
were introduced by Max & Burkhart (1976), 
using a separate polynomial for each differ-
ent  shape segment  of  the  tree  and then 
combines  these  polynomials  into  a  single 
model.

Hierarchical  measured  data  are  used  to 
make  conic  equations.  These  data  struc-
tures  can  cluster  or  differentiate  among 
them, even though they come from trees 
with different  properties  (Diéguez-Aranda 
et  al.  2006,  Ozçelik  &  Crecente-Campo 
2016). One of the most widespread statisti-
cal problems, data auto-correlation (i.e., in-
terdependence  of  data)  may  arise  from 
this  situation  (Leites  &  Robinson  2004). 
The effect of a measurement performed at 
any location on the tree stem on the fol-
lowing  diameter  measurement  value 
should  be  analyzed  in  such  hierarchical 
data  structures.  Hierarchical  data  struc-
tures are a prevalent issue in forestry re-
search, and they may contradict the idea of 
data  independence,  which  is  one  of  the 
fundamental  assumptions  in  regression 
analysis. Furthermore, the autocorrelation 
problem in hierarchical data structures can 
reduce the reliability of the model by intro-
ducing a systematic error in the confidence 
intervals of the parameter estimates in ta-
pered merchantable volume models (Koz-
ak 1997,  Diéguez-Aranda et al. 2006). As a 

consequence,  regression models  with  de-
creasing estimation reliability may produce 
erroneous estimates (Ye 2005).

In hierarchical data structures, when data 
independence  cannot  be  established  and 
there is a correlation problem between the 
data, a variance-covariance matrix allowing 
the structure to be modeled is  used.  For 
this  purpose,  the  use  of  autoregressive 
modeling approaches (Gregoire et al. 1995) 
or nonlinear mixed effect models (Littell et 
al. 2006), which reduce the negative effect 
of many observations in single trees on the 
predictions, may come into prominence in 
forest literature. 

Nonlinear regression modeling is a gener-
ally  accepted  and  widely  applied  tech-
nique.  However,  it  has  significant  limita-
tions,  such as the need to make assump-
tions  about  normality  and  homogeneity, 
the requirement for  defining the form of 
the fitting function, and the need of accu-
rate initial values for correct parameter es-
timates in nonlinear models. These charac-
teristics are looked for in the construction 
of  forecasting  models.  In  contrast,  ANN 
models  can develop knowledge using ex-
perience without making any assumptions 
about the form of the fitting function. Ad-
ditionally, the relationships between input 
and  output  variables  are  built  into  link 
weights  of  the  network  (Ozçelik  et  al. 

2010).  Haykin  (2009) identified  the  three 
main attributes of ANNs: nonlinearity,  ex-
citability, and inter-neuronal interaction.

ANNs have several advantages over tradi-
tional modeling methods because they do 
not require statistical assumptions like tra-
ditional  regression  modeling,  as  well  as 
their  ability  to  detect  complexity  in  the 
computational  process,  thus  allowing  for 
non-linear relationships between input and 
output variables (Sando et al. 2005). Many 
studies in forestry have applied ANN mod-
els (Ercanli 2020a,  2020b,  Ogana & Ercanli 
2021),  which have been proved to obtain 
more accurate predictions than regression 
models  (Ashraf  et  al.  2013,  Senyurt  & Er-
canli  2019).  Because of  the  above advan-
tage, there has been a shift in recent years 
from the use of traditional regression mod-
els  to  ANNs,  particularly  in  growth  and 
yield  modeling  research  (Guan  &  Gertner 
1991,  Ozçelik et al.  2013,  Skudnik & Jevše-
nak 2022).  ANNs have also been used for 
predicting single tree and stand character-
istics  such  as  tree  volume  (Ozçelik  et  al. 
2010,  Mushar  et  al.  2020)  and  tree  taper 
(Diamantopoulou 2005,  Nunes & Görgens 
2016), especially in recent years. The use of 
ANN models is increasing due to the inade-
quacy  of  traditional  regression  models  in 
taper prediction and their autocorrelation 
problem.  Moreover,  the  ability  to  model 
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Fig. 1 – The study area.
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Estimating taper and tree volume in Crimean pine by ANN and regression models

both  taper  and  merchantable  volume  at 
the same time makes ANNs more advanta-
geous than traditional regression models.

However,  ANN  models  have  also  some 
disadvantages, among which the most im-
portant are the “underfitting” and “over-
fitting”  problems.  Indeed,  ANN  models 
with  complicated  architectures  may  per-
form  well  on  the  training  dataset  but 
poorly on new, independent datasets. Nu-
merous  studies  on  forest  development 
modeling  have  demonstrated  that  using 
the  more  effective  nonlinear  modeling 
characteristics  of  deep  learning  network 
models can solve the problem of “underfit-
ting”.  On the other hand, overfitting pre-
dictions in ANN models is a common prob-
lem  in  forestry.  The  overfitting  problem 
can lead to predictions in taper and mer-
chantable volume models without any bio-
logical meaning. For example, ANN models 
might not assess the right relationships be-
tween  diameter  and  volume  or  growth 
trends for trees. According to Ercanli et al. 
(2022), this problem can be solved by cus-
tomizing  the  hyper-parameters  used  to 
build ANN topologies. Although the adap-
tive learning rate of ANN models is main-
tained constant in many studies, a “learn-
ing  rate  customization”  can  be  applied 
which  addresses  the  process  of  locating 
the optimum prediction for various learn-
ing rates. In this study, different hyper-pa-
rameter  options  are  tested,  including  10 
hidden  layers,  5  neurons,  and  a  learning 
rate of 19. This adds up to 950 multilayer 
ANN model options. Changing the learning 
rate during the training stage of the appro-
priate ANN model will help finding the best 
model  with  biological  meaning,  thereby 
solving  the  overfitting  problem  of  ANN 
modeling.

The purpose of this study was to develop 
taper  and  volume  equation  systems  for 
stem  diameters  and  merchantable  stem 
volume estimation in Crimean pine (Pinus 
nigra J.F. Arnold subsp.  pallasiana [Lamb.] 
Holmboe) stands in the Central  Anatolian 
and Mediterranean regions of Turkey. We 
compared how well multilayer ANN meth-
ods and SPTE models by  Max & Burkhart 
(1976) can predict taper and TTV. We also 
investigated  how  changing  hyperparame-
ters in ANN model structures can help get 
rid  of  overfitting  and  show  how  error 
changed for different learning rates while 
getting rid of overfitting.

Material and methods

Material
The  study  was  conducted  on  Crimean 

pine trees from pure stands located in sev-
eral Turkish provinces which represent im-
portant  ecosystem areas  for  this  species, 
namely Uluhan/Nallihan (Ankara  –  31°21′ N, 
40°11′ E),  Andirin (Kahramanmaras -  37°19′ 
N, 36°12′ E), Asagiçigil/Ilgin (Konya - 39°56′ 
N,  31°84′ E),  and  Alahan/Mut  (Mersin  - 
39°56′ N, 32°51′ E  – Fig. 1). Due to its geo-
graphical  location,  geological  structure, 

and climate variation, Turkey has an exten-
sive and diverse flora, with over 11,000 taxa 
distributed over the country. Crimean pine 
is the second most widespread coniferous 
tree species in Turkey after red pine and is 
the dominant tree species in the study ar-
eas.  The  study  provinces  of  Nallihan  and 
Asagiçigil  present  a  continental  climate, 
while  Andirin  and Alahan provinces  show 
Mediterranean climate characteristics. The 
mean elevations of the study stands in the 
above  provinces  are  755,  1100,  1300,  and 
300 m a.s.l., respectively; the mean annual 
temperatures are 11.7, 12.6, 11.8, and 19.2 °C; 
and  the  mean  annual  precipitations  are 
390, 1370, 260, and 370 mm, respectively; 
the slope ranged between 10% and 70%.

The  sampled  trees  were  randomly  se-
lected  from  the  study  area  and  sampled 
with a distribution which reflects the varia-
tion in diameter and height classes and the 
variation in TTV as well. A total of 200 sam-
ple trees were cut from the stump height 
(0.3 m), the stump diameter was recorded, 
and  the  other  stem  diameters  over  bark 
were  measured  at  1-meter  intervals  (1.3, 
2.3, 3.3, …, m above the ground) up to the 
tree’s  top.  These  sample  trees  were  di-
vided  into  two  groups:  training  (model) 
data (170 trees, 85% of total data) and vali-
dation data (30 trees, the remaining 15%). 
Tab.  1 shows  some  descriptive  statistical 
values for the sampled trees.

The TTV was calculated by adding the vol-
umes of the stump log, the sections, and 
the crown for each sample tree. The stump 
was supposed to be cylindrical, but the top 
section was  assumed to  be  cone-shaped. 
Smalian’s  formula  (eqn.  1)  was  used  to 
compute the volume of each section; the 
cylinder formula (eqn. 2) was used to calcu-
late the stump volume; and the cone for-
mula (eqn. 3) was used to calculate the top 
volume: 

(1)

(2)

(3)

where d0 is the thick diameter of the tree, 
d0.3 is the stump diameter, and dn is the thin 
diameter of the tree.  The addition of the 
calculated volume for each section yielded 
the TTV.

SPTE and taper-based volume 
prediction

It  is  assumed in  the  SPTE that  the  tree 
stem can be separated into three geomet-
ric shapes. The top section of the tree re-
sembles a cone, the stem part resembles a 
paraboloid, and the bottom log part has a 
nyloid shape (Max & Burkhart 1976). SPTEs 
contain a different equation for each com-
ponent of the tree stem, and thus they can 
explain the variation in trunk shapes quite 
successfully. In this study we used the SPTE 
to  describe  the  variations  in  stem  forms 
with two joining points (eqn. 4):

(4)

where Z = h/H, Ii = 1 if Z ≤ ai and Ii=0 if Z > ai. 
In all equations, d is the diameter over bark 
at height h (cm), D is the diameter at breast 
height over bark (cm), h is the height at the 
measurement  point  (above  ground  along 
the stem, in m),  H is the total tree height 
(TTH, m), a1 and a2 are join points to be esti-
mated from the sample data for the Max & 
Burkhart (1976) equation,  and  b1-b4 are re-
gression coefficients.

Integrating  the  results  obtained  from 
eqn. 4 in the following merchantable vol-
ume equation (Zhao et al. 2019  – eqn. 5):

(5)

where w = h/H. A TTV equation was derived 
by setting h = H (eqn. 6):

(6)

The  constant-form  factor  volume  equa-
tion has a specific instance in eqn. 6 (Spurr 
1952). A series of algebraically compatible 
taper  and  volume  equations  is  given  by 
eqns. 4–6.

The PROC MODEL function of  the  SAS® 

statistical package  (SAS Institute Inc. 2013) 
was  used  to  predict  the  parameter  esti-
mates and other statistical criteria for the 
Max & Burkhart’s taper equation. The itera-
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Tab. 1 -  Descriptive statistics of the fitting and validation datasets. (STD): standard 
deviation.

Dataset N Variables Min Max Mean STD

Fitting 170

DBH (cm) 11.0 60.0 31.4053 11.0561

TTH (m) 5.64 24.0 12.7274 4.1566

TTV (m3) 0.0414 3.1185 0.6603 0.6084

Validation 30

DBH (cm) 13.9 58.0 33.0633 13.5006

TTH (m) 7.27 23.0 13.445 5.0439

TTV (m3) 0.0792 2.9595 0.8148 0.8027
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tion of seemingly unrelated regression (IT-
SUR) parameters has also been added to 
reduce the error variance of volume data 
when using the PROC MODEL function to 
estimate the segmented taper model. The 
ITSUR  technique  and  the  MODEL  proce-
dure  of  the  SAS/ETS® statistical  program 
(SAS Institute  Inc.  2013)  were  used to  si-
multaneously  harmonize  the  components 
of the system.

Autoregressive modeling for stem 
diameter estimates

Various degrees of autoregressive model-
ing are recommended solve the serial cor-
relation problem that  may occur  in  taper 
predictions (Tang et al. 2016,  Poudel et al. 
2018). Some refinements were made to the 
Max  &  Burkhart  (1976) taper  equation 
(Diéguez-Aranda et al. 2006) to account for 
autocorrelation,  using  a  modified  con-
tinuous  autoregressive  error  structure 
(CAR(1)).  The  PROC  MODEL  was  used  in 
SAS® for the  Max & Burkhart (1976) taper 
equation  to  add  the  continuous  autore-
gressive error structure (CAR(1)) to the pa-
rameter estimation steps when the autore-
gressive  modeling  method  was  used 
(Diéguez-Aranda et al. 2006).

To account for first-order autocorrelation 
and increase the error terms, the following 
CAR(1) model form was used (Zimmerman 
& Núñez-Antón 2001 – eqn. 7):

(7)

where eij  is the j-th ordinary residual of the 
i-th individual (i.e., the difference between 
the observed and the estimated diameters 
of the i-th tree at height measurement j), d1 

= 1 for j > 1, and d1 = 0 for j = 1, is the first-or-
der  continuous  autoregressive  parameter 
to be estimated, and hij > hij-1 is the distance 
separating the  j-th from the  j-th  – 1 obser-
vation within each tree,  hij >  hij-1. The ρ1 pa-
rameter  was  expanded  in  the  following 
way using dummy variables to account for 
the  position  of  the  measurements  along 
the bole: ρ1 + ρ11d11 + ρ12d12, where d11 and d12 

are either 1 or 0, depending on the relative 
position of the measurements. Before ac-
counting  for  autocorrelation,  the  relative 
positions  of  each model  were  graphically 
evaluated.  Finally,  the  correlations  be-
tween the raw residuals and the residuals 
from  previous  observations  within  each 
tree  for  the  relative  height  classes  were 
calculated.

ANNs for taper and TTV estimates
In  this  study,  we applied  ANNs for  pre-

dicting the diameter along the bole and in-
dividual TTV. ANNs is one of the artificial in-
telligence  (AI)  methods  which  emulates 
the human nerve cell and the data transfer 
process  that  takes  place  in  these  cells. 
ANNs are developed in a structure consist-
ing of three layers: the “input layer”, “hid-
den layer”, and the “output layer”. In par-
ticular,  if  the number of intermediate lay-
ers is increased, complex network models 

with  a  higher  number  of  layers  than  the 
three-layer basic structure of ANN models 
can be obtained. The layered structure of 
ANN models has 5 basic elements: inputs, 
weights,  summation  functions,  activation 
functions,  and  outputs  (Nwankpa  et  al. 
2018). The activation function, which con-
nects various layers, can be changed by the 
user who connects the network model and 
conducts the network training.

The  3-layers  network  structure  depends 
on the ANN model used in the training of 
data. The connections between these lay-
ers  are  regulated  by  some  parameters, 
such as the hyperbolic tangent (tanh), the 
rectifier, and the maxout, etc, which serve 
as transition functions between the input 
and hidden layers and the hidden and out-
put layers.  Preliminary evaluations carried 
out  in  the  present  study  suggested  that 
several  activation  functions,  such  as  the 
rectifier and the maxout, resulted in signifi-
cantly  poor  TTV  projections.  As  a  conse-
quence, the tanh function ranging from -1 
to 1 was chosen as an activation function 
to train the ANNs as it  provided the best 
predictions of TTV. The number of neurons 
in the intermediate layer is another crucial 
issue in ANN models, and their number can 
be established by the user. Both the type 
of  activation function and the number of 
neurons are important parameters that af-
fect the accuracy of predictions in the ANN 
model (Nasr et al. 2003).

In this study, the measured stem diame-
ters (in cm) of the sample trees (170 trees 
in the training dataset) were defined as the 
output  variable  (target  variable)  in  the 
training  of  ANN  models.  In  addition,  the 
DBH of trees, TTH, and other independent 
variables from Max & Burkhart (1976) were 
taken as  input  variables  for  training ANN 
models. Several ANN models were trained 
to  predict  both  the  diameter  along  the 
bole and the TTV of the sampled trees. In 
the latter model the TTV of trees was set as 
the output variable, and the DBH and the 
TTH were taken as input variables. We use 
the  Levenberg-Marquardt  algorithm  and 
ANN  based  on  multilayer  feedforward 
backpropagation  networks  to  calculate 
SPTE and TTV. The number of hidden layers 
in the model was ranging from 1 to 10 (1-, 
2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, and 10-layer num-
bers), and a customized, multi-layer model 
training has been obtained. In addition, five 
different  neuron  options  (10,  30,  50,  70, 
and 100) were considered for hidden layers 
for the training of ANN models.

A unique feature of this study is the spe-
cial  focus on eliminating overfitting prob-
lems and violations of biological realism in 
SPTE and TTV. Overfitting is a common is-
sue in forestry when estimating various in-
dividual tree and stand properties (Ercanli 
et  al.  2022,  Bolat  et  al.  2023)  which  can 
cause ANN models to be very effective for 
their own training datasets but very unsuc-
cessful when tested on independent data-
sets. 

ANN modeling in forestry must take into 

account the biological realism of the model 
predictions, as extensively discussed in the 
literature (Avery & Burkhart 1983, Van Laar 
& Akça 2007, Pretzsch 2009). In this study, 
we aimed both to limit the overfitting issue 
of ANN models and to maintain the biologi-
cal realism of the their predictions through 
the application of hyper-parameterized val-
ues  in  the  model  structure.  To  this  end, 
several  preliminary  analyses  were  carried 
out to identify the hyper-parameters to be 
used  in  the  network  topology.  Hyper-pa-
rameters  such  as  moment  rate  and  early 
stopping  with  root  mean  squared  error 
(RMSE) showed poor ability in solving the 
overfitting problem. In contrast, hyper-pa-
rameters such as learning rate successfully 
predicted  taper,  total  and  merchantable 
tree volume by avoiding overfitting. Nine-
teen different learning rates in the range 0-
1 were tested in the model (from 1 × 10-6 up 
to 0.1),  and the multi-layered ANN model 
training  was  conducted  using  the  above 
learning rate values. Overall,  a total of 950 
multi-layer ANN models were trained and 
their  performance evaluated in this study 
(10 different numbers of hidden layers  × 5 
different numbers of neurons × 19 different 
learning rate options).

When  training  all  hyper-parameterized 
ANN models, the “h2o.deeplearning” func-
tion of the H2O package in R was used to 
predict tree tapers, total and merchantable 
volumes  (H2O.ai  2018).  The  H2O  package 
was  selected  as  it  offers  quick  and  easy 
network model training for numerous hy-
per-parameterized  variables  and  used  to 
train  multi-layer  feedforward  neural  net-
works.

Evaluations of SPTE and TTV models
To compare and evaluate the predictive 

accuracy of equations obtained with  Max 
&  Burkhart  (1976) taper  equation,  TTV 
equation, and ANN models with hyper-pa-
rameter customizations, various statistical 
fitting criteria were used, such as the aver-
age absolute error (AAE – eqn. 8),  RMSE 
(eqn. 9),  RMSE% (eqn. 10), Akaike informa-
tion criterion (AIC – eqn. 11), Bayesian infor-
mation criterion (BIC – eqn. 12), and the fit 
index (FI – eqn. 13):

(8)

(9)

(10)

(11)

(12)

(13)

where y = TTVi or di, n is the number of data 
points, and k is the number of inputs of the 
independent  variable  in  the  prediction 
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|y− ŷ|/n

RMSE=√∑i=1

n
( y− ŷ )2 /(n−k )

RMSE%=(√∑i=1

n
( y− ŷ)2 /(n−k )

ȳ )⋅100
AIC=n⋅ln (RMSE)+2⋅k
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n
( y− ŷ)2(n−1)

∑i=1

n
( y− ȳ )2(n−k )
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methods within the model.
Here, observed and predicted values are 

related to stem diameters and TTV, since in 
this  study  prediction  models  were  devel-
oped  for  both  taper  and  TTV.  Therefore, 
these statistical fitting criteria were calcu-
lated  and  evaluated  separately  for  both 
equations. 

Results
The  goodness-of-fit  statistics  (AAE, 

RMSE,  RMSE%,  FI,  AIC,  and BIC) obtained 
for all the developed models are presented 
in Tab. 2 (for taper) and Tab. 3 (for TTV) for 
the training data set, and Tab. 4 (for taper) 
and Tab. 5 (for TTV) for the validation data 
set.

As for taper estimations, the ANN model 
with hyper-parameter customization (with 
10 neurons, 3 hidden layers, and 0.02 learn-
ing rate values) had an AAE value of 6.7272, 
RMSE of 2.5979, RMSE% of 10.6424, AIC of 
1170.8512,  BIC  of  2851.3577,  and  FI  value 
0.9588 (Tab. 2). Similar to the values in the 
training  dataset,  the  validation  dataset 
yielded  prediction  results  with  AAE  = 

6.9385, RMSE = 2.6575, RMSE% = 10.4494, 
AIC  =  230.8447,  BIC  =  538.9188,  and FI  = 
0.9661 (Tab. 4). The goodness-of-fit statis-
tics showed that the ANN model with cus-
tomized hyper-parameters performed bet-
ter than all the other estimation methods 
on the validation data set (Tab. 4) in terms 
of AAE, RMSE, RMSE%, AIC, BIC error val-
ues, and FI.

The  ANN  model  with  hyper-parameter 
customization (100 neurons, 1 hidden layer, 
and 0.02 learning rate values) had the best 
predictive  capacity,  with  AAE  =  0.0102, 
RMSE  =  0.1017,  RMSE%  =  15.4102,  AIC  = 
-384.5554, BIC = -270.7204, and FI = 0.9722 
for the training data set (Tab. 3). Similarly, 
for the validation dataset, this ANN model 
showed the most accurate prediction with 
0.0133 AAE, 0.1195 RMSE, 14.6496 RMSE%, 
-59.7242 AIC, -42.9298 BIC, and 0.9786 FI.

The scatter  plots  of  taper  and TTV esti-
mates  vs. the  actual  volume  values  ob-
tained  by  all  models  are  well  dispersed 
along the 1:1 line (Fig. 2, Fig. 3).

We fixed the overfitting problem of the 
ANN models and used the training data set 

to obtain  the TTV prediction graphics  for 
each  method,  along  with  the  biologically 
realistic fit or violation conditions (Fig. 3). 
The  TTV  plot  made  by  the  Max-Burkhart 
model looked like a real biological system 
(Fig.  3a),  but  the  TTV  plot  made  by  the 
ANN model without hyper-parameter cus-
tomization  showed  a  TTV  development 
predicted as a wavy line with peak forma-
tion  (Fig.  3b).  However,  the  ANN  model 
with  hyper-parameter  customization fixes 
this issue (Fig. 3c).

Discussion
In this study, Crimean pine taper and TTV 

in the Central Anatolia and Mediterranean 
regions  of  Turkey  were  predicted  using 
two  different  modeling  methods  and  the 
hyper-parameter  customization  in  ANN 
modeling. The performance of the superior 
ANN models in various layers and with vari-
ous  numbers  of  neurons  was  also  com-
pared  (Tab.  2,  Tab.  3).  The  ANN’s  model 
structure was customized,  the estimation 
scenarios  for  several  learning  rates  were 
examined  and  evaluated,  and  the  best 
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Tab. 2 - Goodness-of-fit statistics for taper prediction in the training dataset. (BPHP); Best Predictive Hyper-Parameter; (ANN – HPC):  
ANN model without hyper-parameter customization; (SPTE): the SPTE of Max & Burkhart (1976) based on CAR(1). 

No. Hidden 
Layers

No. of
Neurons

BPHP
Value

AAE RMSE RMSE% AIC BIC FI

1 30 0.02 6.8024 2.6124 10.8383 1177.6207 2858.1273 0.9583

2 30 0.01 7.3046 2.7072 11.1685 1221.0043 2901.5108 0.9552

3 10 0.02 6.7272 2.5979 10.6424 1170.8512 2851.3577 0.9588

4 50 0.005 7.4139 2.7273 11.2757 1230.0442 2910.5508 0.9546

5 30 0.005 7.3328 2.7124 11.0405 1223.3507 2903.8573 0.9551

6 70 0.003 7.1661 2.6814 11.0882 1209.3444 2889.8510 0.9561

7 70 0.003 7.3871 2.7224 10.9900 1227.8458 2908.3523 0.9547

8 50 0.003 7.5689 2.7557 11.1161 1242.6516 2923.1581 0.9536

9 30 0.005 7.1406 2.6766 11.1263 1207.1772 2887.6838 0.9562

10 50 0.005 7.5262 2.7479 11.2888 1239.2010 2919.7076 0.9539

ANN – HPC 5.3375 2.3131 9.4983 1027.4250 2359.5350 0.9673

SPTE 9.9693 3.1613 12.8715 1407.9020 2740.0120 0.9389

Tab. 3 - Goodness-of-fit statistics for TTV prediction in the training dataset. (BPHP); Best Predictive Hyper-Parameter; (ANN – HPC):  
ANN model without hyper-parameter customization; (SPTE): the SPTE of Max & Burkhart (1976) based on CAR(1).

No. Hidden
Layers

No. of
Neurons

BPHP
Value

AAE RMSE RMSE% AIC BIC FI

1 100 0.02 0.0102 0.1017 15.4102 -384.5554 -270.7204 0.9722

2 70 0.01 0.0109 0.1049 15.8405 -379.2664 -265.4314 0.9704

3 10 0.03 0.0112 0.1066 16.0097 -376.5140 -262.6789 0.9695

4 100 0.01 0.0119 0.1096 16.9441 -371.8345 -257.9995 0.9677

5 100 0.005 0.0121 0.1108 16.9376 -369.9668 -256.1317 0.9670

6 10 0.01 0.0122 0.1112 16.6813 -369.4435 -255.6085 0.9668

7 70 0.003 0.0141 0.1194 18.6085 -357.3231 -243.4881 0.9617

8 30 0.01 0.0136 0.1171 17.4638 -360.5637 -246.7287 0.9632

9 100 0.005 0.0142 0.1197 18.6124 -356.9199 -243.0848 0.9615

10 50 0.005 0.0130 0.1148 17.6664 -364.0099 -250.1749 0.9646

ANN -HPC 0.1681 0.4124 59.6382 -146.5630 -32.7280 0.5431

SPTE 0.0402 0.2018 39.5826 -268.0990 -154.2640 0.8907
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Tab. 4 - Goodness-of-fit statistics for taper prediction in the validation dataset.  (BPHP); Best Predictive Hyper-Parameter; (ANN –  
HPC): ANN model without hyper-parameter customization; (SPTE): the SPTE of Max & Burkhart (1976) based on CAR(1).

No. Hidden
Layers

No. of
Neurons

BPHP
Value

AAE RMSE RMSE% AIC BIC FI

1 30 0.02 6.7499 2.6212 10.3706 227.7038 535.7790 0.9670

2 30 0.01 8.4257 2.9285 11.6023 252.9841 561.0592 0.9588

3 10 0.02 6.9385 2.6575 10.4494 230.8447 538.9198 0.9661

4 50 0.005 8.2732 2.9019 11.4537 250.9016 558.9767 0.9595

5 30 0.005 7.9231 2.8398 11.0515 245.9731 554.0483 0.9612

6 70 0.003 8.2638 2.9002 11.4709 250.7728 558.8479 0.9596

7 70 0.003 7.6382 2.7883 10.7244 241.7988 549.8740 0.9626

8 50 0.003 8.1375 2.8780 11.1287 249.0175 557.0926 0.9602

9 30 0.005 7.5987 2.7811 11.0231 241.2073 549.2824 0.9628

10 50 0.005 8.9094 3.0114 11.8665 259.3479 567.4231 0.9564

ANN - HPC 87.5046 9.4165 31.8548 517.2830 761.7660 0.5720

SPTE 9.3150 3.0723 11.6957 261.9150 506.3990 0.9544

Tab. 5 -  Goodness-of-fit statistics for TTV prediction in the validation dataset. (BPHP); Best Predictive Hyper-Parameter; (ANN – 
HPC): ANN model without hyper-parameter customization; (SPTE): the SPTE of Max & Burkhart (1976) based on CAR(1).

No. Hidden
Layers

No. of
Neurons

BPHP
Value

AAE RMSE RMSE% AIC BIC FI

1 100 0.02 0.0133 0.1195 14.6496 -59.7242 -42.9298 0.9786

2 70 0.01 0.0146 0.1249 15.3228 -58.4095 -41.6151 0.9766

3 10 0.03 0.0180 0.1390 17.4086 -55.1908 -38.3964 0.9710

4 100 0.01 0.0169 0.1345 16.9094 -56.1845 -39.3901 0.9729

5 100 0.005 0.0177 0.1375 17.1662 -55.5216 -38.7272 0.9717

6 10 0.01 0.0141 0.1228 14.9751 -58.9189 -42.1244 0.9774

7 70 0.003 0.0215 0.1519 19.3320 -52.5308 -35.7364 0.9654

8 30 0.01 0.0208 0.1492 18.7324 -53.0795 -36.2851 0.9667

9 100 0.005 0.0212 0.1505 19.0802 -52.8052 -36.0108 0.9660

10 50 0.005 0.0200 0.1462 18.5912 -53.6742 -36.8798 0.9680

ANN - HPC 0.5330 0.7557 166.9549 -4.4040 12.3910 0.1443

SPTE 0.0569 0.2469 38.3476 -37.9690 -21.1740 0.9087

Fig. 2 - Scatter-
plots of predicted 
vs. observed 
diameter of train-
ing data (a: Max-
Burkhart; c: ANN 
without hyper-
parameter cus-
tomization; e: 
ANN with hyper-
parameter cus-
tomization) and 
predicted vs. 
observed diame-
ter of validation 
data (b: Max-
Burkhart; d: ANN 
without hyper-
parameter cus-
tomization; f: 
ANN with hyper-
parameter cus-
tomization) for 
taper equations.
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learning rate was determined. We also ex-
amined  an  extensive  variety  of  scenarios 
from the most basic to the most complex 
architectures (up to 10 hidden layers and 
100 neurons) and solved the overfitting is-
sue.

While  overfitted  models  may  give  good 
results  on the  training dataset,  they  may 
underperform using the validation dataset 
(Ercanli et al. 2022). Also, it is worth noting 
that  ensuring  the  reliability  of  ecological 
models is crucial to guaranteeing their ac-
curacy. To this end, we fixed the overfitting 
problem  likely  affecting  our  initial  ANN 
models, as it could be argued by the very 

high  values  of  AAE,  RMSE,  RMSE%,  AIC, 
BIC,  and FI.  Indeed,  predictions based on 
these error measures may appear accurate 
even if they are not.

Although  the  ANN  method  initially  pro-
vided more accurate results than the Max 
and Burkhart model (Tab. 4), overfitting of 
the data was evident and could not be re-
solved (Fig.  3b).  Therefore,  the  hyper-pa-
rameter  customization  recommended  by 
Ercanli et al. (2022) was used and the accu-
racy  of  model  predictions  using  different 
learning rates was monitored. Not only the 
overfitting was resolved after the analyses 
with the adaptive rate disabled, but there 

was also an obvious reduction in model er-
rors and a higher FI.

Our results showed that the ANN method 
seems to perform better than other meth-
ods for both taper and TTV models both in 
terms of FI and RMSE% (Tab. 2, Tab. 4). This 
method may also produce models that are 
biologically  meaningful  for  the  expected 
TTV growth by setting up a sigmoid trend 
with  a  known  asymptote.  The  results  of 
ANN  models  with  violations  of  biological 
realism can also be trained with other pa-
rameter  adjustments.  Our  results  con-
firmed the findings by Ercanli et al. (2022), 
who considered the hyperparameters cus-
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Fig. 3 - Scatterplots of predicted vs. observed volume of training data (a: Max-Burkhart; c: ANN without hyper-parameter customiza-
tion; e: ANN with hyper-parameter customization) and predicted vs. observed volume of validation data (b: Max-Burkhart, d: ANN 
without hyper-parameter customization, f: ANN with hyper-parameter customization) for TTV equations. 

Fig. 4 - Three-dimensional graphs of training data. (a): Max-Burkhart; (b): ANN without hyper-parameter customization; (c): ANN  
with hyper-parameter customization) for TTV equations.
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tomization as  a  useful  way to obtain  the 
most  accurate  results,  with  lower  error 
rate than other methods, and in line with 
biological realism (Fig. 3). Consequently, ta-
per  and TTV can be effectively  estimated 
using ANN methods.

Taper equations have been widely used in 
many inventory studies because they can 
provide detailed TTV estimation using eas-
ily  measurable variables such as diameter 
and height. ANNs worked better than tra-
ditional regression methods in many stud-
ies,  including those that developed taper, 
volume, diameter, and height equations or 
estimated  leaf  area  index  (Ozçelik  et  al. 
2010, 2014, Nunes & Görgens 2016, Sakici & 
Ozdemir 2018,  Ercanli 2020a,  2020b,  Socha 
et al. 2020, Senyurt et al. 2020, Sandoval & 
Acuña  2022).  However,  in  many  of  these 
studies the learning rates were left at their 
default  values,  and  overfitting  was  not 
taken into account in the ANN model de-
velopment.

The results of this study support previous 
results that the ANN method outperforms 
the  traditional  regression  method.  Addi-
tionally, monitoring for changes in various 
learning rates and the customization of the 
model structure helped solving both over-
fitting of the training dataset and the bio-
logical realism of predictions in the valida-
tion dataset (Fig. 4).

Conclusion
Taper and TTV equations for Crimean pine 

were  developed  by  eliminating  the  auto-
correlation problem using both the  tradi-
tional  regression  method  and  the  ANN 
method. The structure of the ANN model 
network was changed to adapt to biologi-
cal growth through changing the learning 
rate  and/or  applying a  customized hyper-
parameterization of the models.  The vari-
ance  in  errors  according  to  the  different 
learning rates included in the models was 
also  monitored,  confirming  the  superior 
performances  of  ANN-based  procedures 
over conventional regression models.

ANN  methods  do  not  require  statistical 
assumptions  and  can  provide  predictions 
at least as good as or even better than tra-
ditional regression methods. Moreover, hy-
per-parameter (e.g., learning rate) custom-
ization allows to overcome the problem of 
data autocorrelation. According to our re-
sults, the ANN models with hyper-parame-
ter customization outperformed the tradi-
tional regression methods in predicting the 
taper and TTV of Crimean pine in Turkey, 
thus providing results that meet the needs 
of decision-makers and practitioners in the 
management  of  forest  resources.  How-
ever, it is worth stressing that the results 
of  this  study  should  not  be  extrapolated 
outside  the  study  area  unless  adequate 
tests of the developed models are carried 
out. 
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