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Exploring machine learning modeling approaches for biomass and 
carbon dioxide weight estimation in Lebanon cedar trees
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Accurate estimates of total tree biomass are of critical importance to obtain
reliable estimation of the carbon dioxide weight sequestered from the atmos-
phere by trees and forest stands. This information has the potential to guide
appropriate forest management decisions which allow for both the improve-
ment of forest sustainability and the implementation of multi-task reforesta-
tion designs aimed to mitigate the detrimental effects of climate change. The
current laborious and tree-destructive procedures needed to attain such infor-
mation has led to the development of machine learning (ML) models aimed at
providing  accurate estimations  of  the tree biomass  sequestering  the atmo-
spheric carbon dioxide. We tested the Levenberg-Marquardt artificial neural
network and the support vector machine for regression techniques as an alter-
native to non-linear allometric regression (NLR) modelling approaches com-
monly used for tree biomass estimation. We tested the developed ML models
using primary ground-truth data from the Lebanon cedar forests in the West-
ern Inner Anatolian regions of Turkey, and their predictions were compared to
those of NLR models developed using the same dataset. The results showed
that the ML approaches outperformed the NLR models in accurately estimating
tree biomass and its components (above- and belowground dry biomass, dry
branches biomass, etc.), and the support vector regression (SVR) models gave
the highest accuracy of estimates. Therefore, the carbon dioxide weight se-
questered in Lebanon cedar trees were reliably estimated, with the aim of
supporting the best forest management practices to be applied in Lebanon
cedar tree stands in Turkey.

Keywords: Tree Biomass, Carbon Dioxide Weight, Levenberg-Marquardt Artifi-
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Introduction
The carbon cycle  represents  the earth’s

natural  way of  reusing the  atoms of  car-
bon.  In  recent  years  the planet  is  experi-
encing global  changes due to the human
intervention  that  can  deeply  impact  the
balance of the carbon cycle. Living organ-
isms  along  with  water,  atmosphere,  and
soil, play a vital role in maintaining the car-
bon  cycle  equilibrium.  Carbon  dioxide  re-
moval  from  the  atmosphere  is  made  by
two processes.  First,  carbon is  converted

into a solid form that  is  stored in leaves,
stems, trunks, branches, and roots of the
trees,  helping them to grow.  The second
process  includes  the  oxygen  that  is  re-
leased  back  into  the  atmosphere.  In  this
way,  trees  and  forests  can  provide  food
and oxygen which living organisms depend
upon for their survival. Moreover, biomass
energy,  forest  health and ecosystem pro-
ductivity can be predicted through the esti-
mation of total tree biomass and its com-
ponents.  Therefore,  accurate  biomass

equations are key components  of  carbon
measurements and estimation (Güner et al.
2022, Maesano et al. 2022).

To produce reliable and accurate models
of  tree  biomass,  this  is  usually  separated
into above-ground and below-ground bio-
mass.  Further,  the  tree  stem,  bark,
branches, and foliage are modeled as dif-
ferent parts of the above-ground biomass,
due to  their  significant  variation which  is
difficult to describe using a single, compre-
hensive model.  Similarly,  different models
are  developed  to  estimate  the  different
uses of tree components (industrial wood,
chip-board wood, bioenergy wood).  Final-
ly,  all  components  of  above-  and  below-
ground tree biomass can absorb and store
remarkable  quantities  of  the atmospheric
carbon dioxide, with up to half of the annu-
ally cycled carbon in forests stored in the
root system (Kralicek et al. 2017,  Güner et
al. 2022).

Because of its valuable wood properties,
Lebanon  cedar  (Cedrus  libani  A.  Rich.)  is
one  of  the  most  important  tree  species
from an economic and ecological perspec-
tive  for  Turkish  forestry  (Boydak  2003).
Natural  Lebanon  cedar  forests  in  Turkey
cover an area of about 482,391 ha, with a
current standing volume of approximately
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27.4 million m3 (GDF 2015).  Moreover,  af-
forestation  efforts  using  Lebanon  cedar
are  also  carried  out  beyond  its  natural
range  of  distribution  in  many  countries,
owing to its adaptability and high survival
rate.  For this  reason,  cedar is  one of  the
most widely used species in reforestation
worldwide,  and represents  approximately
15%  of  plantation  forests  in  Turkey  (Kon-
ukçu 2001).  Messinger et al.  (2015) stated
that  the  economic  potential  of  cedar  in
forestry is  high,  deserving further investi-
gations  to  be  used  in  silvicultural  planta-
tions. Also, Lebanon cedar has the poten-
tial  to  be  used  in  reforestation  activities
across Central Europe, due of its resistance
to heat and cold. To this end, the study of
the carbon sequestration potential of this
species is fundamental. 

Previous studies aimed at developing ac-
curate and reliable models  for  estimating
cedar trees biomass are very rare. Durkaya
et  al.  (2013),  and  Aydin  (2016) developed
biomass equations for natural cedar stands
from the Mediterranean region of Turkey,
using the least-squares  regression model-
ing procedure.  However, this approach re-
sulted  in  inconsistent  biomass  estimates,
which frequently violate the additivity of a
system  of  tree  component  regression
equations and failed to match the compati-
bility  of  the  aboveground  biomass  esti-
mates with total tree biomass. Moreover,
the same set of equations might ignore the
inherent  correlation  among  the  biomass
components (Parresol 2001).

Multiple linear and non-linear regression
approaches  have been used for  tree  bio-
mass  estimation,  being  log  transformed
data used to overcome the heteroscedas-
ticity  of  datasets  (Parresol  2001).  Later,
due  to  their  flexibility  to  deal  with  het-
eroscedasticity of the tree biomass compo-
nents,  linear  and  non-linear  regressions
seemingly unrelated each other, along with
generalized linear models, were used (Par-
resol 2001,  Zhao et al.  2016,  Poudel et al.
2019). Lately, there has been an increasing
interest  in  the  use  of  machine  learning
(ML) models as a powerful mean with suit-
able characteristics in forest research (Vap-
nik 1998,  Smola & Schölkopf 2004,  Kriesel
2007, Haykin 2009, Nandy et al. 2017, Mae-
sano et al. 2022). The ML technique is char-
acterized by its outstanding generalization
ability  and the potential  of  learning from
noisy or incomplete data, by detecting in-
herent complex nonlinear relationships be-
tween output and input variables. Success-
ful effort to produce reliable and accurate
models for tree biomass estimation using
ML  techniques  have  been  previously  re-
ported (Guo et al. 2012, Ozçelik et al. 2017,
Malek et al. 2019, Güner et al. 2022). In ad-
dition,  Artificial  Neural  Networks  (ANNs)
and  Support  Vector  Machines  for  regres-
sion (SVR), have recently gained scientific
interest  in  forestry  research  (Youquan  et
al.  2012,  Ozçelik  et  al.  2013,  Binoti  et  al.
2016, Tavares Júnior et al. 2019, Bolat et al.
2023),  thanks to their  independence of  a

priori specifications  of  the  (i)  form of  an
equation describing the ground truth data,
(ii)  data  distribution,  and  (iii)  potential
transformations of the variables, which are
all to be matched in the case of regression
modeling.  In  particular,  ANN  modeling  is
considered as a valid alternative to non-lin-
ear  modeling,  especially  for  complex  bio-
logical ecosystems such as the forests (Wu
2014,  Özçelik et al. 2017,  Malek et al. 2019,
Güner et al. 2022). Similarly, the interest in
using SVR in forestry has been increasing
since  their  introduction  in  the  late  1990s
(Cortes & Vapnik 1995,  Vapnik 2000), due
to their ability in learning from noisy data
and  minimizing  the  generalization  errors.
Chen & Hay (2011) adopted an SRV model-
ing approach to assess  forest  biophysical
parameters.  Malek et al.  (2019) used SRV
to predict the stem diameter and biomass
at individual level, while Hamidi et al. (2021)
modeled the volume increment at the plot
level using different machine learning tech-
niques. Other studies proved the potential
of the nonparametric, supervised SVR tech-
nique  in  successfully  modeling  forest  at-
tributes (Youquan et al.  2012,  Binoti et al.
2016).

To our best knowledge, biomass estima-
tion modelling of cedar trees has been fo-
cused so far on allometric models. For ex-
ample, the least-squares regression model-
ing used for biomass estimation for cedar
trees  in  Turkey  (Durkaya  et  al.  2013)  re-
sulted in acceptable, though high, standard
errors of biomass estimation. In this study,
advanced  machine  learning  algorithms
such as  the  Levenberg-Marquardt  optimi-
zation  algorithm  of  the  multi  perceptron
ANNs and the non-linear ε-Support Vector
Regression (ε-SVR), were applied with the
aim to achieve reliable estimation of both
the whole tree biomass and tree compo-
nents  biomass  (branches,  barks,  needles,
stems,  above-ground  and  below-ground)
at  the  same  time.  Allometric  regression
models  were  also  developed  to  compare
variable  estimates  obtained  by  ML  tech-
niques with those resulting from non-linear
regression modeling. Furthermore, the ad-
ditive capacity of the ML models was ex-
amined as an indicator of their proper con-
struction.  The most  reliable  and accurate
biomass estimation model was used to pre-
dict  the  carbon  dioxide  weight  sequest-
ered  in  Lebanon  cedar  trees.  The  perfo-
mances of  both machine learning models
(LMANN and SVR) were evaluated for the
accuracy  and  reliability  of  biomass  esti-
mates.

Materials and methods

Study area
The study was conducted in an area lo-

cated between 37° 46′ -  40° 10′  N and 29°
40′  - 32° 01′  E in the Western Inner Anato-
lian regions of Turkey, with elevation rang-
ing  from  900  to  1500  m  a.s.l.  The  most
common soil types are Cambisols and Luvi-
sols  (IUSS  Working  Group  2015)  with  pH

ranging  between  4.3  and  7.9,  and  total
CaCO3 content  between  0.0%  and  54.6%.
The mean annual temperature varies from
10.8 to 11.1 °C, annual precipitation ranges
from 374 to 436 mm, and climate ranges
from semi-arid to humid (GDM 2020). 

Cedar plantations were established in the
period 1977-2011 in the Western Inner Ana-
tolian regions of Turkey for erosion control
of dry lands. Seedlings were planted at 3 ×
2 m spacing. Thinning was not applied to
these plantations  until  today.  The age of
the study plots varies between 12 and 46
years.

Field work
To fully reflect the variability of stand con-

ditions in the study area, 40 sample trees
were selected from 40 sample plots repre-
senting  different  aspects,  slope  degrees
and  positions,  and  tree  development
stages. Sample plots where randomly dis-
tributed  over  an  area  of  7500  ha.  Plots
were circular in shape, 25 to 400 m2 in size
and included 11-19 individuals with different
stand structures. According to the method
reported  by  Njana  et  al.  (2016),  in  each
sample plot one sample tree was cut from
ground level in such a way to reflect differ-
ent diameter and height classes. The age of
sampled trees ranged from 12 to 46 years.
Total  height  (tht)  and diameter  at  breast
height  (dbh)  of  each  sample  tree  were
measured after felling. First, the main stem
was divided into 2-m long sections which
were weighted after branch removal. Then,
3-5 cm thick subsamples were taken from
the middle of each section. Needles were
separated from branches by hand. Stumps
and roots of sampled trees were excavated
from  the  ground  by  using  a  shovel  and
hand chain hoist. All tree components and
subsamples,  including  dead  and  live
branches, stems, needles, bark, and roots,
were weighed in the field and subsamples
were taken to the laboratory to determine
the moisture content.

Laboratory work
Samples were oven-dried in the lab until

constant weight at 65 °C to calculate the
dry weight (DW) to fresh weight (FW) ratio
of each component. Oven-dried biomass of
each  tree  was  calculated  multiplying  the
DW/FW ratio by the whole tree fresh bio-
mass. The bark biomass of trees was calcu-
lated by weighing the oven-dried disks be-
for and after bark removal. The bark coeffi-
cient was calculated using the ratio of bark
weight to the weight of disc with bark. The
stem bark weight was calculated multiply-
ing the bark coefficient by the fresh weight
of the whole stem. The summary statistics
of  diameter  at  breast  height  (dbh),  total
tree height (tht), age, total dry weight, and
dry  weight  of  the  different  components
(branches,  barks,  needles,  stems,  above-
ground and below-ground), as well as the
carbon  ratio  of  each  component,  are  re-
ported in Tab. 1.
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Machine learning for tree biomass and carbon dioxide weight estimation

Modeling approaches
The  basic  scope  of  any  modeling  ap-

proach is the construction of a reliable and
accurate  model  that  can  effectively  de-
scribe the relationships between the vari-
ables of interest. To this purpose, the sec-
ond order Levenberg-Marquardt (LMANN)
optimization  algorithm  (Levenberg  1944,
Marquardt 1963) has shown its potential by
effectively dealing with non-linearity (Singh
et  al.  2007),  while  its  efficiency  for  small
and  medium  size  datasets  has  been  dis-
cussed in the literature (Wilamowski & Yu
2010,  Bilski  et  al.  2020).  Both  the  above
conditions are met in forest ground-truth
data. Further, due to its cumulative advan-
tages of the gradient descent methods and
the Gauss-Newton algorithm, the LMANN
methodology has proven to produce stable
systems which avoid to be captured in local
minima  and  reach  rapid  convengence  at
the same time (Wilamowski & Yu 2010, Wu
2014, Wu & Ji 2015). The combination of the
update  rule  of  weights  from  the  Gauss-
Newton algorithm can be described by the
eqn. 1:

(1)

and the update rule of weights by the gra-
dient descent algorithm by eqn. 2:

(2)

The update rule for  the Levenberg-Mar-
quardt (LM) algorithm is of the following
form (eqn. 3):

(3)

where H = Jt
T J + μI is the LM algorithm ap-

proximation  to  Hessian  matrix  of  second
order derivatives,  μ is the combination co-
efficient  that  allows the  LM algorithm to
take advantage of  the  desired properties
of each one of the Gauss-Newton and the
gradient descent algorithms, namely stabil-
ity and convergence speed, I is the identity
matrix,  J is  the Jacobian matrix that con-
tains first derivatives of the network errors
with respect to the weights and biases, et is
the  training  error  at  output  t,  wt is  the
weight at output t,  gt =  Jt

T  et is the first-or-
der  derivative  of  the  total  error  function
(sum square error) and α is the step size of
the gradient descent algorithm.

The LMANN models  were developed by
The Math Works TM Inc. (Matlab 2022) at
Aristotle University of Thessaloniki, Greece.
LMANN  models  is  built  in  a  three  layer
back-propagation neural network architec-
ture, including: (i)  an input layer with the
variables showing the most significant im-
pact  to  the  configuration  of  the  output
variable, as inferred from sensitivity analy-
sis; (ii)  an  input  layer  with  the  optimum
number of hidden nodes resulting from the
trial and error procedure concerning over-
fitting, undertraining and training efficien-
cy; and (iii) an output layer with the estima-
tion variable.

Due to its  effectiveness,  the continuous
and  bounded  nonlinear  transfer  function
transmitting  the  information from the in-
put to the hidden layer was the hyperbolic
tangent function (Fausett 1994 – eqn. 4):

(4)

where s = Σ (wi xi), s  [-∞, +∞] and tanh(s)∈
 [-1, +1].∈
Finally,  a  linear  activation  function  was

used  to  transfer  the  incoming  weighted
values from the hidden to the output layer,
as the combination of the hyperbolic tan-
gent and the linear transfer functions be-
tween the two layers proved more effec-
tive.

The basic concept of the SVR methodol-
ogy  is  to  find  an  optimal  surface  lying
within  the limits  determined  by  the  Sup-
port Vectors, using a loss function and min-
imizing the regression error of all training
samples (xi’s). In the case of tree biomass
modeling,  the  ε-insensitive  loss  function
supported by the radial basis kernel func-
tions  (RBF)  in  non-linear  ε-SVR  algorithm
(Vapnik 1998,  2000) was used. The meth-
odology behind the non-linear RBF kernel
ε-SVR  algorithm  has  been  thoroughly  de-
scribed (Smola & Schölkopf 2004). In sum-
mary, into the ε-insensitive tube that was
set  by  the  Support  Vectors,  the  desired
learning error has been determined, and its
dimension  mapped  onto  a  higher  dimen-
sional space. For this purpose, a fixed non-
linear mapping function φ(x)∈Rn (n-dimen-
sional space) is applied, until at the end a
linear  combination  is  constructed  of  the
form f(x)=[w,φ(x)]+b,  f(x)∈R. The configu-
ration of the weights (w) is determined by
the minimization of the loss function (Smo-
la  & Schölkopf  2004)  containing the cost
parameter C, which represents the smooth-
ness  of  the  model,  the  variables  called
“slack” variables,  which reflect the devia-
tion of points laying outside the ε-insensi-

tive zone, and the weight parameters. The
minimization of the loss function is the so-
lution of the quadratic programming prob-
lem  under  the  determination  of  the  La-
grange  multipliers  (Kalman  2009).  In  this
procedure SVR makes use of the RBF ker-
nels.  To  map  the  input  vector  x onto  a
higher  dimensional  feature  space,  the
Gaussian radial basis function (RBF) kernels
was  used  (Diamantopoulou  et  al.  2018 –
eqn. 5):

(5)

where γSVR = (1/2σ2) is the free parameter of
the RBF kernels, called “gamma” parame-
ter,  and ||xi -  xj||  is  the Euclidean distance
between the support vectors.

For the construction of the ε-SVR models,
libraries  of  scikit-learn  (Pedregosa  et  al.
2011)  in  Python  programming  language
(Van  Rossum  &  Drake  2011,  Python  Soft-
ware Foundation 2022) were used.

Allometric models for the total tree bio-
mass and its components were also devel-
oped to compare the performances of ML
models  described above with those from
the traditional non-linear regression model-
ing  techniques  (NLR).  Also,  much  effort
was spent to handle the heteroscedasticity
of  the  dependent  variable  on  one  hand,
and to select the proper form of equation
on the other hand.  Each regression model
form (i.e., linear, logarithmic, inverse, qua-
dratic,  cubic,  power,  compound,  S-curve,
growth, and exponential models) was eval-
uated based on the mean square error and
coefficient  of  determination  (IBM  2021),
and the best performing model was the al-
lometric one (eqn. 6):

(6)

where  ŷ is  the dependent  variable  and  xi

are the independent variables used for the
ML models construction, in order to com-
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Tab. 1 - Summary statistics of the sampled trees used for biomass estimation.

Variables N Min Max Mean STD

Diameter at breast height (dbh, cm) 40 4.10 35.50 17.69 9.48

Total height (tht, m) 40 1.92 20.16 9.82 5.07

Age (years) 40 12.0 46.0 31.0 10.62

Dry total biomass for whole tree (dwt, kg) 40 4.09 558.15 170.76 178.08

Dry above-ground biomass (dwag, kg) 40 3.35 462.43 142.32 149.55

Dry below-ground biomass (dwbg, kg) 40 0.74 95.72 28.44 29.60

Dry stem biomass without bark (dws, kg) 40 0.53 290.71 80.53 91.09

Dry branch biomass (dwb, kg) 40 1.41 126.68 34.73 37.52

Dry needle biomass (dwn, kg) 40 1.09 67.68 12.96 13.35

Dry bark biomass (dwbark, kg) 40 0.32 49.84 14.11 14.47

Carbon content 
ratio (%) of the 
tree components

Stem 40 0.50 0.53 0.52 0.01

Branch 40 0.25 0.53 0.48 0.01

Bark 40 0.50 0.53 0.52 0.01

Needle 40 0.50 0.53 0.51 0.01

root 40 0.48 0.50 0.49 0.01
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pare  the  different  modeling  approaches
under the same basis of the available infor-
mation.

Concepts of the machine learning 
modeling

To  avoid  over/under-fitting  of  both  the
machine  learning  modeling  approaches
(LMANN  and  SVR),  the  three-way  data
splits  method  (Olson  &  Delen  2008)  was
used. The available dataset was randomly
split into two distinctive parts for calibrat-
ing/training  (including  90%  of  the  whole
dataset)  and  validating/testing  (10%)  the
above models. The calibration dataset was
further split  using the  k-fold (k=10) cross-
validation  resampling  technique  to  mini-
mize the effect of a possible poor separa-
tion of the calibration sample into the fit-
ting and validation datasets (for further de-
tails,  see  Fig.  S1  in  Supplementary  mate-
rial).

According to the LMANN modeling con-
struction (see eqn. 1 to eqn. 3), the effec-
tive convergence of the LM algorithm de-
pends on the value of the combination co-
efficient (μ). For large values of  μ, the up-
date of weights resulted in the gradient de-
scent  update,  meaning  fast  convergence
and  stability,  while  small  values  of  μ  re-
sulted in the Gauss-Newton update, mean-
ing accuracy in prediction. The initial value
of μ was set to 0.01, and then it was itera-
tively multiplied/divided by an adjustment
factor (v = 0.001) leading to an increment/
decrement in the weight’s values until the
lowest sum of squared error was obtained
by the whole node network.

As for the SVR modeling approach, its ef-
fective convergence depends on the best
combination  of  three  meta-parameters
that controls the estimation error, the Ker-
nel’s spread and the simplicity of the con-
structed model. Specifically, the ε parame-
ter represents the length of the ε-insensi-
tive  tube  (i.e.,  the  estimation  error);  the
gamma parameter γSVR (eqn. 5) sets the ker-
nel  spread  and  the  cost  parameter  C re-
flects  the  model  smoothness  (Diamanto-
poulou et al. 2018). When the selected γSVR

values are too small, the model has a high
probability not to capture the complexity
of  data,  while  the  model  could  probably
suffer from overfitting when γSVR values are
too  large.  Further,  unsuccessful  selection
of the cost parameter C values can lead to
unnecessary  support  vectors,  resulting  in
unnecessary  complexity  of  the  model.  In
this  study,  the  best  combination  of  the
three  meta-parameters  described  above
was  obtained  by  the  grid-search  method
(Python Software Foundation 2022), which
can  be  considered  as  a  complete  brute-
force  algorithm  (Liashchynskyi  &  Liash-
chynskyi  2019)  making  an  exhaustive
search over the combination of predefined
ranges of the three meta-parameters. We
simultaneously  tested  ε  over  the  range
from 0.001 to 0.120 by steps of 0.001,  γSVR

over the range 0.01-1.00 by 0.01, and the C
parameter  from  4  to  800  by  2i where  i

[2,10] for ∈ i N. This algorithm can be time-∈
consuming,  especially  for  big  data  sets,
though crucial to construct the most accu-
rate and reliable SVR model, as expressed
by its prediction errors for the calibration
and test data sets.

Models performance evaluation
The  criteria  used  to  assess  the  perfor-

mances  of  the  constructed  models  are
listed below. In all subsequent equations, yi

are the observed values,  ŷi are the values
estimated by the models,  ȳ is the mean of
the  observed  values,  bar{ŷ}  is  the  esti-
mated mean values, and n is the total num-
ber of data used for fitting. The correlation
coefficient (r) was calculated as a measure
of linear correlation between the observed
values and ML model predictions (eqn. 7):

(7)

The mean square error (mse) was calcu-
lated as the average of the square of the
difference  between  actual  and  estimated
values (eqn. 8, eqn. 9):

(8)

(9)

The mean bias (bias) was calculated as an
indicator the models’ precision (eqn. 10):

(10)

and  the  mean  absolute  deviation  (mad)
used as an overall indication of the models’
error variance (eqn. 11):

(11)

Carbon dioxide weight estimation
According to  the  above model’s  perfor-

mance  criteria,  the  best  model  was  se-
lected for estimating each of the tree com-
ponents. The results were then used to de-
rive  the  estimates  of  the  carbon content
(kg)  of  both  each  component  and  the
whole tree. For this purpose, the carbon ra-
tio (CR) previously measured in the labora-
tory  for  each  biomass  component  was
used (eqn. 12):

(12)

where  CC is the carbon content,  DB is the
dry biomass and  i is the  i-th biomass com-
ponent  of  the  tree.  The  carbon  dioxide
weight (in kg) per tree can be calculated as
follows (eqn. 13):

(13)

where k is the k-th tree and 3.66 is the con-
stant ratio of the CO2 to C in a CO2 mole-

cule,  which  is  composed of  two oxygens
(atomic weight  = 15.999u) and one carbon
(12.011u),  therefore  the  ratio  is  44.009/
12.011 = 3.66.

As the age of each tree sampled in this
study is known, the mean carbon dioxide
weight sequestered by Lebanon cedar tree
plantations per year and per tree wascalcu-
lated. This information can be used to esti-
mate  the  carbon dioxide  weight  in  cedar
stands of the same area, as long as stand
density  and  the  distribution  of  diameters
are known.

Results
As  expected,  the  relationships  between

the dependent variables (total and compo-
nent  biomass)  and  the  independent  vari-
ables  (dbh  and  tht)  showed  nonlinear
trend. Details on the relationship between
dry components / diameter / height  are re-
ported in Fig. S2 (Supplementary material).
For  a  given tree  height,  there  is  a  larger
variation in the component and total bio-
mass values than for a tree of a given diam-
eter.  The variance in estimation of crown
(foliage and branch) biomass was greater
(in relative terms) than that obtained in the
estimation of wood biomass. This is due to
the variability of the crown structure, the
number of  branches,  and the variation in
wood density along branches. In this study
we attempted to capture the non-linear na-
ture of the biomass by applying ML tech-
niques (LMANN and SVR).

Ground-truth  measurements  based  on
variables selected in advance due to  a pri-
ori knowledge related to a specific problem
is  usually  carried  out  in  forest  research
(Maier  & Dandy 2000).  In  this  study,  the
above approach was used to get measure-
ments  for  a  wide range of  variables  that
could affect the biomass estimation. Sensi-
tivity analysis for the variables measured in
the field was conducted. The complete ML
model (i.e., including all variables as model
inputs) was fitted on the data, and the esti-
mation error was recorded (rmseall)  along
with the level of significance of each vari-
able. Then, a new model was constructed
excluding one variable, and the estimation
error  was  recorded (rmseall-1).  If  (rmseall-1 /
rmseall) < 1, the excluded variable was con-
sidered as non-significant in the model con-
struction and therefore discarded. The lat-
ter procedure was repeated for each input
variable in the construction of the LMANN
model.  The  significant  variables  obtained
as described above were then used as in-
puts in the construction of the SVR model.

Levenberg-Marquardt ANN models
Sensitivity analysis was applied to all the

variables  and  their  compound,  and  the
most  significant  input  variables  for  the
LMANN model were detected. The analysis
revealed the strong effect of the variables
(i)  diameter  at  breast  height,  (ii)  total
height of trees and stands, and (iii) age of
the stand, on the dependent variables (to-
tal tree biomass and biomass of tree com-
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ponents).  The exclusion of anyone of the
above variables and/or their combinations
from the models led to inaccurate predic-
tions of the tree biomass components. 

An example of the above procedure is re-
ported in Fig. S3 (Supplementary material)
where the dry branch biomass (dwb) and
its combinations showed a ratio  (rmseall-1 /
rmseall) > 1, meaning that this variable was
significant in the model construction. Simi-
lar distribution errors can be derived from
all different outputs of the models.

Using the same trial and error procedure,
all  the  building  elements  of  the  models
(epochs,  combination  coefficient,  hidden
nodes,  etc.)  were  determined,  and  the
three-way  data  splits  method  implement-
ed.  Fig.  1 shows the results of the repeti-
tions  under  the  different  handle  of  the
building elements of each network,  in re-
spect  to  the  possible  minimum  values  of
both network estimation and prediction er-
rors, in order to maximize the generaliza-
tion ability of the model.

The best performing LMANN model (Fig.
1) for each biomass elements and the total
biomass (both above-  and below-ground)
satisfied simultaneously the following con-
ditions: (i) minimum deviation (in terms of

mean  square  error)  from  the  validation
datasets; (ii) minimum overall mean square
error value of the fitting data set.

The proper values of the combination co-
efficient  (μ),  the  numbers  of  the  hidden
nodes of each model in the hidden layer,
and the proper number of the repetitions
(epochs) in the model construction, were
tested  in  the  interval  between  1.0e -6 and
1.0,  2-12 nodes,  and 1-500 epochs,  respec-
tively.  The  lowest  rmse% values  were  ob-
tained using the best fitting LMANN model
for dry stem biomass, while the model that
estimates the dry biomass of branches had
the largest  rmse% values, due to the large
variance observed in the data (Tab. 2).

Support vector regression models
The same variables selected via sensitivity

analysis for the construction of the LMANN
models were also used for developing SRV
models for each biomass component and
the  total  tree  biomass.  The  k-fold  (k=10)
cross-validation method was applied to the
calibration data set, and the best combina-
tion of the model parameters has been se-
lected (Fig. 2) using the grid-search meth-
od,  namely  the  GridSearchCV  function
(Python  Software  Foundation  2022).  The

optimal values for the ε,  γ, and C parame-
ters  selected  for  the  best  SVR  models,
along with the values of the evaluation sta-
tistics,  are  given  in  Tab.  3.  The  best  se-
lected SVR models gave acceptable model-
ing errors ranging from 0.26% for the dry
stem weight  of  trees  to 10.4% of  the dry
needle mean weight. According to the re-
sults  of  Tab.  2 and  Tab.  3,  both  the  ML
models  developed  in  this  study  can  pro-
duce reliable and accurate biomass estima-
tion results.

Allometric  models  were  also  developed
for  biomass  estimation  of  cedar  trees
(components  and  total).  The  Levenberg-
Marquardt algorithm was used for the opti-
mization of  non-linear  regression models.
To avoid  local  minima during the  conver-
gence of the models,  the initial  values of
their parameters were obtained following
the  approaches  described  in  Draper  &
Smith (1998). The parameters estimate ob-
tained  for  the  NLR  biomass  models  are
given in Tab. 4.

For the comparison of  the performance
of  allometric  models  in  predicting  cedar
tree biomass (components and total)  ver-
sus LMANN and SVR models developed for
the same variables,  the correlation coeffi-
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Fig. 1 - Construction of the
best LMANN fitted models
for all dry biomass compo-

nents (dwn, dwb, dws,
dwbark, dwbg, dwag)

along with the total dry
biomass (dwt).
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Tab. 2 - Values of the construction elements for the best LMANN models and evaluation statistics according to the adaptation of the
best models to the whole data set, for all biomass components and for the total tree biomass of the cedar trees. (a): Input nodes
(5): stand age, stand dbh, stand tht, dbh, tht.

Output
node

aInput nodes
Hidden
nodes

Best epoch
Comb. coef.

(μ)
mse rmse (%) bias mad r

dwn 5 6 19 1.0e-3 1.76 10.24 -0.075 0.918 0.9949

dwb 5 8 35 1.0e-2 35.30 17.11 -0.204 2.089 0.9871

dws 5 8 42 1.0e-2 0.34 0.72 -0.013 0.295 0.9999

dwbark 5 4 34 1.0e-4 0.45 4.78 0.049 0.346 0.9989

dwbg 5 5 18 1.0e-3 9.81 11.01 -0.098 1.921 0.9943

dwag 5 5 22 1.0 e-1 64.37 5.64 -0.261 5.341 0.9985

dwt 5 7 13 1.0e-2 54.78 4.322 0.633 4.441 0.9991

Fig. 2 - Mean square values 
of the SVR fitted models, 
for different parameters’ 
combination, for all dry 
biomass components 
(dwn, dwb, dws, dwbark, 
dwbg, dwag) along with 
the total dry biomass 
(dwt).
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cient and the mean square error values de-
rived by all models were used (Fig. 3). Both
ML models outperformed NLR models with
high differences both in terms of correla-
tion (Fig. 3a) and mean square error esti-
mations  (Fig.  3b).  NLR  models  showed
rmse values ranging between 1.7 kg in the
case of the bark biomass to 19.1 kg in the
case of  the above ground biomass.  Error

estimations  were  higher  by  1.02–11.39  kg
using  the  NLR  models  as  compared  to
LMANN models, while error estimation us-
ing  NLR  models  are  1.11–13.15  kg  higher
than  those  obtained  using  SVR  models.
Therefore, the precision of NLR estimates
could  not  be  considered  sufficient  for
biomass  estimation  of  cedar  tree  planta-
tions. 

Another  significant  advantage  of  ML
models used for biomass estimation is their
additive  property.  Both  machine  learning
modeling  approaches  used  in  this  study
have shown that the additive property of
variable predictions was not violated, and
this holds for multiple layers.  That is,  the
estimations of the sectional biomass (dwn,
dwb, dws, dwbark, dwbg, dwag) gave val-
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Fig. 3 - (a) Correlation
coefficient and (b) mean

square error values derived
by NLR, LMANN and SVR

models, for biomass com-
ponents and for the total

biomass of the trees.

Fig. 4 - Additivity of the
constructed (a) LMANN
and the (b) SVR models’
estimates of the compo-

nent biomass (dwn, dwb,
dws, dwbark, dwag and

dwbg) to the estimate of
the total tree biomass

(dwt).

Fig. 5 - Estimated (a) car-
bon content by both ML

modeling approaches and
(b) CO2 sequestration per
tree and per diameter at

breast height, by the SVR
modeling approach.
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ryTab. 3 - Values of the construction elements for the best SVR models and evaluation statistics according to the adaptation of the
best models to the whole data set, for all biomass components and for the total tree biomass of the cedar trees. (a): Input variables
5: stand age, stand dbh, stand tht, dbh, tht

Output 
variable

aInput 
variables

Cost 
parameter (C)

Parameter
(ε)

“gamma” 
parameter

γSVR

mse
rmse
(%)

bias mad r

dwn 5 30 0.001 0.06 1.81 10.40 -0.265 0.395 0.9950

dwb 5 66 0.011 0.06 4.69 6.24 0.395 0.795 0.9988

dws 5 250 0.001 0.02 0.04 0.261 0.008 0.071 0.9999

dwbark 5 250 0.001 0.01 0.34 4.16 -0.106 0.144 0.9992

dwbg 5 435 0.001 0.01 0.19 1.54 -0.064 0.107 0.9999

dwag 5 347 0.001 0.02 35.41 1.56 -0.998 1.565 0.9992

dwt 5 684 0.1 0.03 40.96 3.75 -0.956 1.709 0.9999
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ues smaller than those obtained for the to-
tal biomass (dwt) using both LMANN (Fig.
4a) and SVR (Fig. 4b) models.  To test for
the equality of the total biomass estimates
with the sum of the sectional biomass esti-
mates obtained using the ML models, the
Wilcoxon’s  non-parametric  signed  rank
test for related samples was used. The re-
sults showed p-values of 0.638 and 0.882
for  the  LMANN  and  the  SVR  models,  re-
spectively, meaning that the equality can-
not be rejected at  α=0.05. In addition, the
distribution of  residuals  of  the  difference
between the sum of  the component  bio-
mass  estimates  and  the  observed  total
biomass was fairly close to zero using both
ML  modelling  approaches  (see  Fig.  4  in
Supplementary material).

Regarding the performances of ML mod-
els  in  the  estimation  of  different  compo-
nent of cedar trees, both approaches gave
similar  results  for  the  dry  needle  weight,
while  the  support  vector  regression  ap-
proach gave significantly more accurate re-
sults in estimating the other tree compo-
nents  (Tab.  2,  Tab.  3).  The  same  results
have been obtained for the estimated car-
bon content in kg per tree and per diame-
ter  at  breast  height  (Fig.  5a).  Using  the
best fitting LMANN model the estimation
bias (eqn. 10) was equal to -0.167 kg, while
it was -0.015 kg using the best fitting SVR
model.  For this reason, we estimated the
carbon content (eqn.  12,  Fig.  5a)  and the
carbon dioxide weight (eqn. 13, Fig. 5b) for
the sampled cedar trees and stands based
on the results derived from the SVR mod-
els (Tab. 3).

Discussion
Carbon storage by trees can represent a

useful  parameter  for  decision-making  in
multipurpose  forest  management  of
Lebanon cedar plantations. Due to its valu-
able properties, this species is widely used
for afforestation in Turkey and its potential
in  carbon  gas  sequestration  from  atmos-
phere is worth to be investigated.

Taking  advantage  of  powerful  machine
learning  techniques  currently  available,
neural network (LMANN) and support vec-
tor  regression  (SVR)  models  were  devel-
oped in this study with the aim of obtain-
ing  accurate  and  reliable  estimations  of

tree biomass and its components, and as-
sessing  the  carbon  stored  in  Lebanon
cedar tree plantations in Western Turkey. 

Sensitivity analysis was used for selecting
the best combination of input variables for
the models. The results of showed that the
biomass estimates of  all  the tree compo-
nents  examined  depends  mainly  on  the
breast  height diameter and the height of
the  representative  tree  of  each  plot,  but
also  on  some  characteristics  of  the  plot,
such as the average diameter, height, and
stand age. 

The results of biomass modeling using ML
approaches in this study are in agreement
with those reported in the literature in the
last decade. For example, Guo et al. (2012)
compared  machine  learning  methodolo-
gies for above-ground biomass estimation
using multisource remote sensing data and
found  that  support  vector  machine  algo-
rithm  can  provide  more  accurate  results
compared  with  different  neural  network
architectures.  Malek  et  al.  (2019) investi-
gated  the  use  of  machine  learning  tech-
niques (support vector regression and ran-
dom forest) using airborne laser scanning
data and field measurements,  finding sig-
nificant  improvements  in  biomass  and
stem diameters estimations. In this study,
the models developed using support vec-
tor  regression  provided  significant  im-
provement  in  biomass  (total  and  compo-
nents) estimation as compared to the Lev-
enberg-Marquardt artificial neural network
models.  Specifically,  the  rmse values  for
the LMANN models were in the range of
0.58 kg for  dws to 8.02 kg in the case of
dwag, while the range of rmse for the SVR
model were found between 0.2 kg (dws) to
5.95 kg (dwag). In both models, the lowest
rmse value was obtained for the dry stem
biomass  without  bark,  while  the  highest
were  obtained for  the  dry  above ground
biomass estimated by LMANN models and
the  total  biomass  (above-  and  below-
ground)  by  SVR  models.  As  reported  in
Tab. 2 and  Tab. 3, the results differ some-
how when the rmse% of the mean of each
input  (dependent)  variable  was  consid-
ered.  The  maximum  rmse% was  recorded
for  the  dry  branch  biomass  and  the  dry
needle biomass estimates  by the LMANN
and the SVR models, respectively. 

The performances of the machine learn-
ing models was further evaluated through
their comparison to the allometric non-lin-
ear  regression  models  which  were  devel-
oped for the same sample of cedar trees.
According to biomass (components and to-
tal), the developed NLR allometric models
provided more than two times higher error
values than both the ML models, while the
mean error difference in above-ground bio-
mass  estimates  was  13.15  kg  lower  using
the best fitting SVR model as compared to
the related NLR model. Taking into account
the  effort  required  to  build  a  regression
model and its higher estimation errors, the
use of  the nonlinear  regression approach
takes a back seat when advanced modeling
methods such as those based on machine
learning are available. However, the latter
modeling approach requires hyperparame-
ters  to  be  determined  through  program-
ming efforts and suitable skills.

Our modeling strategy produced a single
model  for  each  biomass  component  and
for the whole tree biomass separately. This
led to the best optimization of the model-
ing parameters according to the different
variability of each target variable, for both
ML modeling approaches used. According
to our results, the support regression mod-
eling procedure yielded the most accurate
and  reliable  biomass  predictions  as  com-
pared to the Levenberg-Marquardt neural
network  modeling  approach,  except  for
the  needle  dry  weight  estimation  which
showed  no  significant  differences  were
found at α = 0.05. As reported in Tab. 3, the
SVR  models  gave  rmse values  2.74,  2.91,
1.15,  7.18, 1.34 and 1.15 times smaller than
the LMANN models’ corresponding values
for the dry weight of the branches (live and
dead – dwb), stem wood (dws), stem-bark
(dwbark),  below-ground  biomass  (dwbg),
total  above-ground  biomass  (dwag),  and
total  biomass (dwt)  of  sampled trees,  re-
spectively.

Similar results were obtained for the esti-
mation of the CO2 sequestration. The SVR
models developed in this study led to the
most accurate estimations per tree and per
diameter at breast height both for carbon
content and CO2 sequestration (see Fig. S4
in  Supplementary  material).  The available
biomass of a forest ecosystem is a measure
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Tab. 4 - Parameters estimates of the NLR allometric models developed, for the whole data set, for all biomass components and for
the total tree biomass of the cedar trees. (a): Independent variables associated with the b i parameters, for i=1,…,5: stand age, stand
dbh, stand tht, dbh, tht, respectively.

NLR model
parametersa

Dependent variable

dwn dwb dws dwbark dwbg dwag dwt

b0 0.003 0.012 0.017 0.008 0.020 0.050 0.057

b1 1.146 0.050 0.086 0.268 -0.030 0.163 0.122

b2 2.221 0.499 -0.084 0.476 0.789 0.235 0.305

b3 -1.955 -0.367 0.072 -0.509 -.820 -0.190 -0.279

b4 2.110 2.133 1.788 0.687 1.700 1.778 1.826

b5 -1.646 0.285 1.107 1.736 0.743 0.697 0.714
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of its  capability  to absorb carbon dioxide
and store carbon, as well as to reduce the
relative  harmful  effects  by  releasing  oxy-
gen to the atmosphere. When carbon stor-
age and CO2 sequestration by cedar planta-
tions can be obtained by accurate models,
adequate  forest  management  decisions
can  be  taken  allowing  for  both  the  im-
provement of forest sustainability and the
implementation of multi-task reforestation
designs aimed to mitigate the detrimental
effects  of  climate  change.  Moreover,  the
development of new models and methods
to improve the prediction of tree attributes
related to forest productivity was deemed
essential  (Güner  et  al.  2022,  Diaman-
topoulou 2022). As displayed in Fig. 5b, the
carbon  dioxide  weight  sequestered  by
cedar trees can be estimated with remark-
able accuracy by the constructed SVR mod-
els. The error calculated using eqn. 9 was
about 1.8% of the observed CO2 mean. The
usual procedures to obtain CO2 quantities
are laborious and tree destructive, where-
as using reliable models the carbon weight
sequestered in trees can be accurately esti-
mated. 

Conclusions
In  this  study,  modern  machine  learning

(ML) techniques have been applied to ac-
curately predict carbon dioxide sequestra-
tion by plantations of Lebanon cedar trees
in  Western  Turkey.  Levenberg-Marquardt
artificial  neural  network  models  and Sup-
port  vector  regression  models  were  con-
structed for the accurate estimation of the
tree biomass components  and the whole
tree  biomass.  According  to  the  results,
both  the  above  models  showed  signifi-
cantly better performances than the non-
linear regression allometric  models  devel-
oped  for  the  same  dataset,  providing
higher  accuracy  in  predicting  cedar  trees
biomass (both the components and total)
and  consequently  more  accurate  predic-
tion  of  the  standing  cedar  trees  carbon
content and the CO2 sequestration per tree
and per diameter at breast height.

Our study also indicates the superiority of
the  support  vector  regression  models  in
producing the most accurate results. These
findings provide an effective basis for fur-
ther exploration of machine learning tech-
niques as a powerful tools for solving sig-
nificant problems that are considered diffi-
cult to be approached in forestry research.

List of abbreviations
ML:  machine  learning;  tht:  total  height;

dbh:  diameter  at  breast  height;  DW:  dry
weight;  FW:  fresh  weight;  ANN:  artificial
neural  network;  LMANN:  Levenberg-Mar-
quardt artificial neural network; LM: Leven-
berg-Marquardt;  SVR:  support  vector  ma-
chines  for  regression;  RBF:  radial  basis
function.
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