Supplementary Material

Appendix 1 – Modified rectangular hyperbolic models for light and CO₂ response curves and the biochemical model for CO₂ response curves.

The modified rectangular hyperbolic model for light response curves can be expressed as follows (Ye 2010):

$$P_{N} = \alpha \frac{1 - \beta I}{1 + \gamma I} I - R_{D} \tag{1}$$

where P_N is the net photosynthetic rate; I is the photosynthetic active radiation; R_D is the dark respiration rate, which can be calculated directly; α is the initial slope of the light response curve of photosynthesis when the light intensity approaches zero; and β and γ are coefficients that are independent of I. The light compensation point (I_c) is the light intensity when P_N =0, and the light-saturated net photosynthetic rate (P_{Nmax}) and light saturation point (I_{sat}) can be calculated using the following formulas:

$$P_{Nmax} = \alpha \left(\frac{\sqrt{\beta + \gamma} - \sqrt{\beta}}{\gamma} \right)^2 - R_D \tag{2}$$

$$I_{sat} = \frac{\sqrt{(\beta + \gamma)/\beta} - 1}{\gamma}$$
 (3)

The modified rectangular hyperbolic model for CO₂ response curves can be expressed as follows (Ye 2010):

$$P_N = a \frac{1 - bC_i}{1 + cC_i} C_i - R_p \tag{4}$$

where P_N is the net photosynthetic rate; C_i is the intercellular CO₂ concentration; R_p is the photorespiration rate, which can be calculated directly; a is the initial carboxylation efficiency (CE); and b and c are coefficients that are independent of C_i . The CO₂ compensation point (Γ) is the intercellular CO₂ concentration when P_N =0, and the CO₂-saturated net photosynthetic rate (A_{max}) and saturated intercellular CO₂ concentration (C_{isat}) can be calculated using the following formulas:

$$A_{max} = a \left(\frac{\sqrt{b + c} - \sqrt{b}}{c} \right)^2 - R_p \tag{5}$$

$$C_{isat} = \frac{\sqrt{(b+c)/b} - 1}{c} \tag{6}$$

The biochemical model for CO₂ response curves can be expressed as follows:

$$P_{N} = min\{w_{c}, w_{j}, w_{p}\} \left(1 - \frac{\Gamma^{*}}{C_{i}}\right) - R_{D}$$

$$(7)$$

where P_N is the net photosynthetic rate; w_e , w_j , and w_p represent the potential CO₂ assimilation rate supported by Rubisco activity, RuBP and inorganic phosphate regeneration, respectively; Γ^* is the CO₂ compensation point (excluding dark respiration); C_i is the intercellular CO₂ concentration; and R_D is the dark respiration rate under light. The values of w_e , w_j , and w_p can be expressed as follows (Ye 2010):

$$w_{c} = \frac{V_{cmax} C_{i}}{C_{i} + K_{c} (1 + O/K_{o})}$$
(8)

$$w_{j} = \frac{jC_{i}}{4.5C_{i} + 10.5\Gamma^{*}}$$
(9)

$$w_p = \frac{3TPU}{1 - \frac{\Gamma^*}{C_i}} \tag{10}$$

where $V_{\rm cmax}$ is the maximum Rubisco carboxylation rate; J is the electron transport rate for RuBP regeneration at light saturation, which is equal to $J_{\rm max}$; TPU is the triose phosphate utilization efficiency; and $K_{\rm c}$ and $K_{\rm o}$ are the Michaelis-Menten constants for carboxylation and oxygenation, respectively (Farquhar et al. 1980).

Cited References

Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. Planta 149 (1): 78-90.

Ye Z (2010). A review on modeling of responses of photosynthesis to light and CO₂. Chinese Journal of Plant Ecology 34 (6): 727-740. [in Chinese]