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The aim of  this  study was  to  evaluate  the viability  of  near  infrared  spec-
troscopy (NIRS) to detect the anomaly known as yellow stain on cork granu-
late. Detecting this anomaly is crucial to the cork granulate stopper industry,
since it is associated with the presence of 2,4,6-Trichloroanisole (TCA), this
compound having been identified as the main agent responsible for cork off-
flavours. Samples for the NIRS spectra were prepared by mixing in different
proportions cork granulate with high visual quality and cork granulate with
yellow stain,  obtaining 120 samples with 8 different percentages of yellow
stain (0, 5, 10, 15, 25, 35, 50 and 100%). Two spectra per sample were col-
lected using a Bruker MPA spectrophotometer and the partial  least squares
(PLS) method was used to obtain numerous equations. The best equation was
obtained by utilizing the standard normal variate (SNV) spectral preprocessing,
making use of only one specific part of the near infrared spectral range: 9400-
4250 cm-1. This equation shows a coefficient of determination (R²) of 99.42%,
a root mean square error of cross validation (RMSECV) of 2.34%, and a residual
prediction deviation (RPD) of 13.10. The critical level and the limit of detec-
tion are 3.8% and 7.6%, respectively. The calculated receiver operating char-
acteristic (ROC) curves show great discrimination capacity and the area under
the ROC curve (AUC) is higher than 0.93 in any case. This study demonstrates
that NIRS provides a viable technique for detecting yellow stain in cork granu-
late.
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Introduction
Cork is obtained from the cork oak tree

(Quercus suber L.) through successive har-
vests  at  given  time intervals  without  the
need to cut down the trees, and it is there-
fore considered a sustainable product. Al-
though cork forests  are  found in  Algeria,
France, Italy, Morocco, Portugal, Spain and
Tunisia  (Sierra-Pérez et  al.  2015),  most  of
them  are  concentrated  in  Portugal  (34%)
and Spain (27%), followed by Morocco with
18%  (APCOR 2016).  Cork  from  the Iberian
Peninsula  accounts  for  about  80%  of  the
raw  cork  extracted  yearly,  49.6%  of  that

corresponds to Portugal and 30.5% to Spain
(APCOR 2016). Cork has numerous applica-
tions though the most important of these
in  economic  terms is  the manufacture of
different types of cork stoppers to be used
in the bottling of wines (Sánchez-González
et al. 2016). It is the suitability of the raw
cork material  for  this  production that  es-
tablishes  its  commercial  value  (Pereira
2007). Agglomerated, micro-agglomerated
and technical stoppers are made from cork
granulate which is obtained by grinding the
cork that is not suitable for the production
of natural cork stoppers and disks, as well

as from the waste generated during cork
manufacturing  (Sánchez-González  et  al.
2015).  Cork  granulate  is  defined  as  cork
fragments between 0.2 and 8.0 mm in size
(UNE-ISO-633 2010) and represents an im-
portant part of the cork industry, account-
ing for 75% of total cork (Gil 2009).

One of the main problems for the cork in-
dustry  is  the  presence  of  2,4,6-Trichloro-
anisole  (TCA  – Barreto  et  al.  2011).  This
compound has been identified as the main
agent responsible for cork off-flavours (Ca-
pone et al. 2002,  Soleas et al. 2002) and is
formed through fungal degradation of the
chlorophenols present in the cork. Various
studies  have  attributed this  phenomenon
to different species of fungi such as Penicil-
lium and  Aspergillus (Calvo et al.  1995) or
Armillaria (Rocha  et  al.  1996).  TCA  has
mould-like taste that will be present in the
wine (Rocha et al. 1998) and it also has a
very  low  detection  threshold,  1.4-4  ng  l -1

(Garcia et al. 2015). Attenuated total reflec-
tion infrared spectroscopy (ATR-IR) proved
that the presence of TCA modifies the cork
spectra (Garcia et al. 2015). In this regard,
two new bands appeared at 1417 and 1314
cm-1 and  the  relative  intensities  of  the
bands increased at 1039 and 813 cm-1 (Gar-
cia et al.  2015). At present, TCA control is
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only being developed for cork stoppers, us-
ing  chromatographic  (ISO-20752  2014)  or
sensory  techniques  (ISO-22308  2005)  and
research is ongoing in this area (Slabizki et
al.  2015,  Slabizki  et  al.  2016).  However,
these techniques cannot be applied to raw
material  (planks  or  granulate)  for  2  rea-
sons, namely, the high cost and high vari-
ability of the material.

The cork defect known as “yellow stain”
was identified as far back as 1900 (Bordas
1904).  Studies  performed  using  scanning
electron microscopy (SEM) carried out on
healthy  cork  and  cork  with  yellow  stain
showed that the cellular structures of the
infected and the healthy tissues were dif-
ferent, and that the tissues attacked were
composed of deformed, wrinkly cells with
cell  wall  separation at  the middle lamella
level  (Rocha  et  al.  1996).  These  changes
were related to the degradation of  lignin
and pectin, as evidenced by the deposition
of calcium in the intercellular space of the
cells attacked (Rocha et al. 1996). Compar-
ative  chemical  studies  showed  that  the
cork  attacked  by  yellow  stain  suffered  a
degradation  of  tannins  with  consequent
discoloration  (García-Vallejo  et  al.  2001)
along with a biosynthesis of TCA (Moio et
al. 1998).

Hence, the industry would greatly benefit
from the development of a method to con-
trol  the  presence  of  yellow  stain  in  cork
granulate. If cork granulate affected by yel-
low stain and therefore by TCA is not re-
moved from the production line, the gran-
ulate cork stoppers produced using this de-
fective material will have a mould-like taste
and therefore will not be suitable for wine
bottle closure. Near infrared spectroscopy
(NIRS) is potentially suitable for detecting
yellow  stain  in  cork  granulate,  since  it  is
widely used in quality control of granulated
products in the food and agriculture indus-

try (Magwaza et al. 2012, Pojić & Mastilović
2013). In addition, NIRS has certain advan-
tages over other analytical methods, such
as rapid and non-destructive analysis,  low
analyzing costs  and easy sample prepara-
tion. Furthermore, it can also provide infor-
mation  on  different  variables  simultane-
ously.

The first application of  NIRS technology
to cork was a  viability  study to assess its
potential for characterizing cork planks ac-
cording to visual quality, porosity and mois-
ture content,  and for  predicting the geo-
graphical  origin of  cork planks (Prades et
al.  2010). The potential of this technology
as a method for predicting the geographi-
cal origin of cork planks and stoppers has
been demonstrated (Prades et al. 2012). It
allows continuous quality control of mois-
ture content in cork stoppers while simul-
taneously obtaining other parameters such
as chemical components (waxes and total
polyphenols)  along with physical  and me-
chanical  parameters  (density,  extraction
force and compression force) (Prades et al.
2014). It is  useful for determining the po-
rosity of cork planks before and after boil-
ing (Sánchez-González et al. 2016). The last
application of this technology is the devel-
opment  of  NIRS  models  to  predict  the
technological  parameters  (caliper,  earthy
cork,  blown cork,  belly  and stained cork)
on cork planks (Prades et al. 2017).

The aim of this study is to develop calibra-
tion equations to predict the percentages
of yellow stain in samples of cork granulate
and thereby evaluate the viability of NIRS
as  a  method  to  detect  cork  with  yellow
stain  on  the  production  line.  Numerous
spectra preprocessing and spectral ranges
were studied to determine the most suit-
able. Lastly, critical level, limit of detection
and receiver operating characteristic (ROC)
curves of the equations were also studied.

Material and methods

Samples and sample preparation
Cork pieces used in this  study were col-

lected in a sampling carried out in Catalonia
(Spain) in 1991 and form part of the INIA-
CIFOR  cork  laboratory  collection.  Two
groups were selected: pieces classified as
being of  the highest  visual  quality  (HQ  –
Fig.  1a),  completely  free  of  defects,  and
pieces  where  yellow  stain  was  clearly
present (YS – Fig. 1b).

Five strips of  0.5 cm thickness were cut
from  the  cross  section  on  all  the  pieces
from both groups and the corkback (phlo-
emic tissue remaining on the outer side of
the cork) was removed. In the case of YS
pieces, areas presenting yellow stain were
separated,  so  that  areas  of  “pure  cork”
and “stained cork” were separately ground
and  sieved (0.5-1  mm) in  order  to  obtain
cork granulate of two types: one compris-
ing 100% highest visual quality cork with no
defects ,and the other, 100% yellow stained
cork.  Both  types  of  cork  granulate  were
dried at 103 °C to constant weight and later
conditioned in a container at constant tem-
perature. When the samples were scanned,
average moisture content was 4.5%.

Samples for the NIRS spectra were pre-
pared by mixing both types of cork granu-
late  in  different  proportions,  obtaining
samples with different percentages of yel-
low  stain  (YSP).  These  percentages  were
established  such  that  the  range  was  as
large  as  possible  while  at  the  same time
having a greater incidence of lower values:
0, 5, 10, 15, 25, 35, 50 and 100%. The amount
of  granulate  per  sample  was  fixed  at  2.5
grams and the number of samples per per-
centage of  yellow stain was 15,  making a
total of 120 samples.

Instrumentation and collection of 
spectra

Samples  were  scanned  using  a  Bruker
MPA® spectrophotometer  (Bruker Analyti-
cal Systems, Billerica, MS, USA) that mea-
sures diffuse reflectance. Spectra were col-
lected  every  16  cm-1 from  12,500  cm-1 to
3,600 cm-1 using OPUS software.

Each sample was weighed prior to analy-
sis on a precision scale of 0.1 mg. Two spec-
tra per sample were obtained making a to-
tal  of  240  spectra.  These  spectra  were
stored as log (1/R) and were used to deter-
mine the percentage of  yellow stain.  The
integrating sphere with a rotating system
was used as a measuring channel and the
area of  spectrum was a circular crown of
35.34 cm2.

Quantitative analysis
Spectra  were  collected and quantitative

analysis  was  performed  using  OPUS  soft-
ware ver. 7.5. Prior to the calibration, the
two spectra taken for each of the samples
were  averaged,  performing  calibration
with  the  120  average spectra.  The  partial
least  squares  (PLS)  method  was  used  to
obtain  the  equations  and  the  maximum
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Fig. 1 - (a) Piece of cork classified as highest visual quality (HQ); (b) piece of cork with
yellow stain clearly present (YS).
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Near infrared spectroscopy to detect yellow stain in cork wood

number  of  PLS vector  was  set  at  10.  Nu-
merous equations were obtained using an
algorithm from the OPUS software, which
allows around 200 combinations of differ-
ent preprocessings to be performed along
with  various  preset  spectral  ranges.  The
distance of  each of  the spectra  from the
center of the space defined by the entire
population,  known  as  Mahalanobis  dis-
tance,  was calculated.  If  the Mahalanobis
distance is greater than 3 for a given sam-
ple, the software classifies it as a spectral
outlier. OPUS software also calculates the
chemical anomaly, defined as samples with
significant differences between their actual
and predicted values.

Equations  were  validated  by  means  of
cross-validation  in  order  to  include  all  of
the spectral variability of the data set. The
best  equations  were  selected  taking  into
account the lowest value of the root mean
standard  error  of  cross  validation  (RM-
SECV) and the highest value of the coeffi-
cient of determination (R2). Another meth-
od of assessment used to evaluate the cali-
bration  was  residual  prediction  deviation
(RPD). It is calculated as the ratio of two
standard  deviations;  the  standard  devia-
tions of the reference data as measured us-
ing the conventional method and the stan-
dard  error  of  cross-validation  (Williams &
Sobering 1993). Calculation of RPD allows
to compare calibrations that have differing
data  ranges  or  have  different  treatments
and  properties.  The  higher  the  RPD,  the
more precise the data described by the cal-
ibration. The last statistic used to evaluate
the  calibration  was  systematic  error  or
BIAS,  which allows to determine whether
the calibration equation overestimates  or
underestimates. The three best equations
were selected.

In order to evaluate the discrimination ca-
pacity  of  the  different  equations,  that  is,
the  ability  to  differentiate  between  pres-
ence or absence of yellow stain rather than
to determine the percentage present,  we
used  detection  probability  (also  termed
true positive or sensitivity) and false posi-
tive probability (1-specificity) by means of
the critical level (LC), the limit of detection
(LD) and the receiver operating characteris-
tics  (ROC)  curves.  These concepts  are re-
lated  through  the  distribution  of  out-
comes, more specifically, the mean and the
standard  deviation  of  those  distributions
(Knoll  2010).  When performing a  discrimi-
nate test in a certain population in which
one part of  this  population has a disease
(or anomaly) and the other part does not,
we would not expect to observe a perfect
separation  between  the  two  groups  but
rather, the distribution of the test results
will overlap (Fig. 2a). As regards the popu-
lation with the disease, two cases are pos-
sible:  true  positive  or  sensitivity,  when
cases  are  correctly  classified  as  positive
and false negative or  error  type II,  when
cases  are  wrongly  classified  as  negative
(values higher than LC). Similarly, two cases
are also possible for the population with-

out  disease:  true  negative  or  specificity,
when cases are correctly classified as nega-
tive and false positive or error type I when
cases  are  wrongly  classified  as  positive
(values lower than LC).

In our case, critical level (LC – eqn. 1) and
limit of detection (LD – eqn. 2) were calcu-
lated as follows (Boqué 2004):

(1)

(2)

where t1-α, v is the value of a t-Student distri-
bution for a level of significance α and v de-
grees of freedom, and s0 is the estimate of
the standard deviation when yellow stain is
not present in the sample. Critical level and
limit of  detection were calculated for the
three best equations.

ROC curves represent sensivity vs. 1- spec-
ificity  (Fig.  2b),  according  to  a  particular
critical level or decision threshold. The area
under this curve (AUC) measures the accu-
racy  of  the  detection  system.  The  closer
the curve to the upper left corner of  the
graph, the greater the accuracy of the cali-
bration (Zweig & Campbell 1993). The AUC

statistic  is  a  threshold-independent  mea-
sure  of  the  accuracy  of  the  discriminant
equation, in which values equal to or less
than 0.5 indicate no discrimination, values
between 0.7-0.8 indicate an acceptable dis-
criminating  capacity,  and  values  between
0.8-0.9 or higher indicate excellent discrim-
inations (Hosmer & Lemeshow 2000). A to-
tal of 7 ROC curves were calculated for the
best equation, varying the size of the sub-
population that is compared with the sub-
population of 15 white samples. In the first
calculation,  all  samples are used,  while in
the last one only those with 5% of yellow
stain are entered.

Results and discussion

Spectra
Fig. 3 shows the mean spectra obtained

for  each  of  the  different  percentages  of
yellow stain in the zone with the absorp-
tion peaks. As far as we know, the spectra
obtained in this study are the first spectra
of  cork  granulate  with  different  percent-
ages  of  yellow  stain  in  the  near  infrared
zone. The spectra show the characteristic
bands reported in previous studies on cork
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Fig. 2 - (a) Example plots of the probability distributions of total samples with disease
(right) and number of samples without disease (left). (LC): critical level; (LD): limit of
detection; (α): probability of committing a type I or false positive error (analysis of a
white gives a positive yellow stain); (β): probability of making a type II or false nega-
tive error (analysis of a sample with yellow stain gives a negative yellow stain). Modi-
fied  from  Boqué  (2004).  (b)  The  corresponding  receiver  operating  characteristic
(ROC) curves for the distributions shown in (a). Modified from Knoll (2010).

Fig. 3 - Mean spectra
for each percentage
of yellow stain (0, 5, 
10, 15, 25, 35, 50 and 
100%) in the zone 
with the absorption 
peaks.
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plank,  stoppers  or  granulate,  correspond-
ing  to  -CH,  -OH  and  C=O  groups.  Specifi-
cally,  bands  of  8230 and  5714  cm-1 corre-
spond to the second and the first overtone
of -CH groups. Bands of 6890 and 5180 cm -1

belong to the first overtone and combina-
tion bands of the -OH group. The band of
4650 cm-1 corresponds to the combination
bands of  the -CH and C=0 groups.  Lastly,
4350 and 4240 cm-1 bands  are  associated
with  the  combination  bands  of  the  -CH
groups (Prades et al. 2010, 2012, 2014, 2017,
Sánchez-González et al. 2016).

All  spectra  show  the  same  absorption
bands though the intensity differs for each
of them. The spectrum of 100% yellow stain
shows the highest absorption, spectra of 0,
5, 10, 15, 25 and 35% show the lowest ab-
sorption and the spectrum of 50% shows an
intermediate  absorption.  Therefore,  the
absorption decreases as the percentage of
yellow stain declines.

Calibration equations
Tab.  1 shows the statistics  for the three

best NIRS calibration equations. Equation 1
was  developed  using  the  entire  NIRS  re-
gion,  without  any  preprocessing  of  the
spectra.  Equation  2  was  developed  using
standard  normal  variate  (SNV)  spectrum
preprocessing  and  also  used  the  whole
NIRS region. The last equation (Equation 3)
was developed using only part of the NIRS
region, 9400-4250 cm-1, using SNV prepro-
cessing of the spectra.  This  region of  the
near infrared coincides with the absorption
peaks  previously  described.  No  spectral
outliers appeared in any of the three equa-
tions, nor were there samples classified as
chemical anomalies.

The number of PLS vectors or rank was 8
for Equations 1 and Equation 3 and was 6
for Equation 2.  Fig. 4 shows the evolution
of RMSECV as the ranking for Equation 3 in-
creased. As can be seen,  from rank 8 on-
wards, the RMSECV increases slightly.

The RMSECV obtained in the three equa-
tions  was  similar  and  ranges  from  3.28%
(Equation 1)  to 2.34% (Equation 3),  reveal-
ing  that  the  equations  developed  predict
the percentage of yellow stain with a high
level of precision. The R2 was greater than
98%  for  Equations  1  and  Equation  2,  and
greater than 99% for Equation 3, so more
than 98% and 99% respectively of the data
variability  is  explained  by  the  equations.
The  RPD  values  were  above  8  (between
9.35-9.68) for Equations 1 and Equation 2,
indicating that  the equations are satisfac-
tory for quality assurance (QA). In Equation
3, the RPD value was above 13 (13.1), indi-
cating that  the  equation is  like the refer-
ence (Williams & Sobering 1996). The BIAS
values  were  positive  for  Equations  1  and
Equation 2, and negative for Equation 3. A
negative BIAS indicates that the equation
overestimates  the  percentage  of  yellow
stain,  which  is  preferable  as  it  provides
greater  assurance  when  estimating  an
anomaly.

Fig.  5 shows  the  percentages  of  yellow
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Tab. 1 - Statistics obtained for the three best NIRS calibration equations. Number of
PLS vectors (Rank), root mean square error of cross validation (RMSECV), coefficient
of determination (R²), residual prediction deviation (RPD) and systematic error (BIAS).

Equation Rank RMSECV (%) R2 (%) RPD BIAS

Equation 1 8 3.28 98.86 9.35 0.0356

Equation 2 6 3.16 98.93 9.68 0.0377

Equation 3 8 2.34 99.42 13.10 -0.0429

Fig. 5 - Predicted
values versus

actual values for
Equation 3. Solid

line represents
the regression

line. Dark-
shaded region

shows the 95 %
confidence inter-

val and dashed
lines are upper
and lower 95 %

prediction inter-
vals of the

regression.
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Fig. 4 - Root
mean standard

error of cross
validation

(RMSECV) versus
number of PLS
vectors (Rank)
for Equation 3.

Fig. 6 - Actual
values vs. differ-
ence values for
Equation 3. Dif-

ference values is
the difference

between actual
values and pre-

dicted values.
Solid line repre-
sents the refer-

ence line y=0.
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stain predicted by the equation vs. the real
values for each of the samples in the case
of Equation 3. It also shows the prediction
limit  and the confidence limit to 95% and
the regression line (y = 0.21 + 0.99·x). It can
be observed that the estimated values dis-
play a compact distribution around the real
value, evidencing the accuracy of the cali-
bration.  All  samples  were  within  the  95%
prediction limits  except  for  three,  one of
5%, another of 25% and another of 50% yel-
low stain. As regards the samples with 15%
or  less  yellow  stain  (in  industry,  yellow
stain is  always found in low percentages,
so  this  is  the  level  of  most  interest),  all
samples  were  within  the  95%  prediction
limits, except for the 5% yellow stain sam-
ple mentioned above.

Fig. 6 shows actual values  vs. the differ-
ence between actual and predicted values
for each of the samples in the case of Equa-
tion 3. For most of the samples the differ-
ence between the actual and the predicted
value was less than 3.5% in absolute value.
Only three samples presented a difference
greater than 5% in absolute value (-5.31% for
the 50% yellow stain sample, -6.00% for the
5% sample and -6.96% for the 25% sample).
These three samples correspond to those
that are beyond the 95% prediction limits. It
is important to note that the largest differ-
ences  are  associated  with  overestimates
(preferable when estimating an anomaly).
The biggest difference due to underestima-
tion was 4.78 for a sample with 35% yellow
stain.  In  the case of  samples  with  15%  or
less  yellow  stain,  the  biggest  difference
due  to  underestimation  was  3.24%  for  a
sample with 15% yellow stain.

Discrimination capacity of the 
calibration equations

To calculate the critical level and the limit

of detection it is necessary to estimate the
standard deviation of the predicted values
for the 15 samples with 0% yellow stain for
each  of  the  equations  (s0).  These  were
4.2%,  3.7%  and  2.2%  respectively.  Tab.  2
shows the results for the critical level (LC)
and the limit of detection (LD) for the three
equations.

The best result for critical level and limit
of detection was also obtained with Equa-
tion  3.  The  critical  level  was  3.8%.  There-
fore, if the predicted value of yellow stain
is higher than 3.8%, then it will certainly not
correspond to a white sample and yellow
stain  will  be present  at  a  95%  confidence
level.  There is a 5% probability of commit-
ting a type I or false positive error (analysis
of a white sample giving a positive for yel-
low stain).

The  limit  of  detection  is  7.6%,  meaning
that this  the minimum percentage of  yel-
low stain for which we are able to state at
a 95% confidence level  that the sample is
not white. As described in the previous sec-
tion, there is a 5% probability of making a
mistake, but in this case, it would be a false
negative  error  (analysis  of  a  sample with
yellow stain gives a negative yellow stain).

Fig. 7 shows the different receiver operat-
ing  characteristic  (ROC)  curves  calculated
for Equation 3 and its evolution when the

number of samples with yellow stain is re-
duced. As can be seen, the equation has a
very high discrimination capacity, since all
curves are very close to the upper left cor-
ner. When decreasing the number of sam-
ples used to calculate the ROC curves (in
Fig. 7 this is equivalent to moving from left
to  right  and  from  top  to  bottom),  and
therefore using lower percentages of yel-
low stain for the calculation, the discrimi-
nation capacity remains high, only decreas-
ing very slightly. The ROC curve calculated
using only the 0 and 5% yellow stain sam-
ples  is  that  which is  of  most  interest  be-
cause the amount of yellow stain present
in  the  production  lines  is  always  small,
since most of the defective part is removed
prior to entering the factory. It can be ob-
served  that  it  maintains  a  very  good  dis-
crimination capacity.

In addition to the graphical interpretation
of the ROC curves, the area under the ROC
curve (AUC) has also been calculated. The
AUC values are between 0.9378 and 0.9911.
This statistic confirms that the discrimina-
tion  capacity  of  Equation  3  is  very  high,
since values above 0.9 are considered ex-
cellent  (Hosmer & Lemeshow  2000,  Tape
2000).

The  results  obtained  demonstrate  that
the NIRS technology is able to detect the
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Tab. 2 - Critical level (LC) and limit of detection (LD) for the three best NIRS calibration
equations. (s0): standard deviation of the predicted values for samples with 0% yellow
stain for each of the equations.

Equation s0 LC (%) LD (%)

Equation 1 4.2 7.4 14.8

Equation 2 3.7 6.5 13.0

Equation 3 2.2 3.8 7.6

Fig. 7 - Receiver operat-
ing characteristic (ROC)

curves for Equation 3.
From left to right and

from top to bottom: ROC
curve with all samples;

ROC curve with samples
of 0-50%; ROC curve with

samples of 0-35%; ROC
curve with samples of 0-

25%; ROC curve with sam-
ples of 0-15%; ROC curve

with samples of 0-10%;
and ROC curve with sam-

ples of 0-5%. The area
under the curve (AUC) is

showed for each of the
calculated ROC curves.
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presence of yellow stain and consequently
an application able to detect continuously
the presence of this anomaly in the lines of
granulates industries could be developed.
However,  it  must  be  taken  into  account
that the models were obtained using just
one geographical origin (Catalonia,  Spain)
and  one granulometry  (0.5-1  mm).  There-
fore, in order to generalize the model on a
broader  scale,  different  geographical  ori-
gins  and  granulometries  should  be  em-
ployed.

Conclusion
This  study  evidences  the  suitability  of

near infrared spectroscopy (NIRS) as a vi-
able technique for detecting yellow stain in
cork  granulate.  The  NIRS  equations  ob-
tained have a coefficient of determination
(R2)  between  98.86%  and  99.42%,  a  root
mean  standard  error  of  cross  validation
(RMSECV) ranging from 3.28% to 2.34% and
a residual prediction deviation (RPD) above
9.  The best  result  is  achieved using stan-
dard  normal  variate  (SNV)  as  preprocess-
ing spectra, entering data exclusively from
the  near  infrared  region  lying  between
9400 cm-1 and 4250 cm-1. This region coin-
cides  with  the principal  absorption peaks
of cork granulate. The critical level (LC) for
the best equation is 3.8%,  so percentages
of yellow stain above 3.8% can be detected
at a 95% confidence level. The limit of de-
tection (LD) is 7.6%, meaning that this value
is the minimum percentage of yellow stain
that  allows  to  state  with  95%  confidence
that the sample is not white.

The  receiver  operating  characteristic
(ROC)  curves  show  a  high  discrimination
capacity. This capacity is maintained even
when samples with a high content of yel-
low stain  are progressively  removed.  The
ROC curve calculated using only 0 and 5%
yellow stain samples still shows a high dis-
crimination capacity. Bearing in mind that
most of the cork contaminated with yellow
stain  is  removed  in  the  post-harvest  pre-
processing,  it  is  important  that  the equa-
tions  maintains  its  discrimination capacity
even at the lower percentages given that
the presence of this anomaly is always low
in  cork  used  for  the  production  of  wine
stoppers.

The results suggest that NIRS technology
may provide a useful method for detecting
low concentrations of yellow stain in cork
granulate.  Batches  in  which  the  anomaly
has been detected could then be removed
at the start of the production line, thus as-
suring the production of  yellow-stain-free
cork stoppers.  However,  further  research
must  be  undertaken  focusing  particularly
on the lower percentages of yellow stain in
order to improve the accuracy of this tech-
nique.
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