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Seeing trees from space: above-ground biomass estimates of intact and 
degraded montane rainforests from high-resolution optical imagery
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Accurately quantifying the above-ground carbon stock of tropical  rainforest
trees is the core component of “Reduction of Emissions from Deforestation
and Forest Degradation-plus” (REDD+) projects and is important for evaluating
the effects of anthropogenic global change. We used high-resolution optical
imagery (IKONOS-2) to identify individual tree crowns in intact and degraded
rainforests in the mountains of Northern Borneo, comparing our results with
50 ground-based plots dispersed in intact and degraded forests, within which
all  stems > 10 cm in diameter were measured and identified to species or
genus. We used the dimensions of tree crowns detected in the imagery to esti-
mate above-ground biomasses (AGBs) of individual trees and plots. To this pur-
pose, preprocessed IKONOS imagery was segmented using a watershed algo-
rithm; stem diameter values  were then estimated from the cross-sectional
crown  areas  of  these  trees  using  regression  relationships  obtained  from
ground-based measurements. Finally, we calculated the biomass of each tree
(AGBT, in kg), and the AGB of plots by summation (AGBP, in Mg ha-1). Remotely
sensed  estimates  of  mean AGBT were  similar  to  ground-based  estimates  in
intact and degraded forests, even though small trees could not be detected
from space-borne sensors. The intact and degraded forests not only had differ-
ent AGB but were also dissimilar in biodiversity. A tree-centric approach to
carbon mapping based on high-resolution optical imagery, could be a cheap
alternative to airborne laser-scanning.

Keywords: Biomass Estimation, Crown Area, IKONOS-2, Tree Community Simi-
larity, Sabah

Introduction
Tropical  rainforests  are  important  sinks

and sources in global carbon cycling. Annu-
ally,  15  to  25%  of  global  greenhouse  gas
emissions are produced by loss of tropical
rainforests, while increases in carbon with-
in  old-growth  forests  may  offset  17%  of
emissions (Malhi & Grace 2000). While fos-
sil fuel emissions increased by 29% between
2000  and  2008,  emissions  from  land-use
changes were nearly constant (Le Quere et
al. 2009). These accelerated emissions, es-
pecially  carbon-based  emissions,  are  the
causes  of  global  warming,  which  affects

forest  ecosystems  worldwide.  Deforesta-
tion contributes to carbon emissions from
land use changes in forests (Brown 2002),
whereas forest degradation is a direct hu-
man-induced activity that leads to a long-
term  reduction  in  forest  carbon  stocks
(IPCC 2006). In Borneo, most lowland pri-
mary  forest  has  been  lost  as  a  result  of
deforestation and forest degradation over
the past 40 years (Langner et al. 2012,  Ga-
veau  et  al.  2014).  The  remaining  uplands
rainforests  are  severely  threatened  by
increasing anthropogenic activities, partic-
ularly in the uplands of the Malaysian Bor-

neon near  Indonesia,  where rates  of  loss
are ten-times greater than across the bor-
der (Broich et al. 2013).

Accurate  carbon  stock  estimates  are
essential for “Reduction of Emissions from
Deforestation  and  Forest  Degradation-
plus” (REDD+) projects, which aims to pay
governments for reductions in carbon diox-
ide emissions resulting from forest protec-
tion. REDD+ is regarded as a cost-effective
mechanism for reducing global greenhouse
gas  emissions  (Stern  2007),  but  will  only
function effectively if carbon savings from
avoided  deforestation  can  be  calculated
cheaply and reliably at high resolution (As-
ner et al.  2010). In the context of REDD+,
forest above-ground biomass (AGBp, in Mg
ha-1)  is  best  estimated  from  field-based
inventory datasets: stem diameter of trees
within  plots  are  measured  by  hand  and
individual  tree  biomass  calculated  from
published allometric formulae, which when
summed and multiplied by carbon content
gives above-ground carbon density (Brown
2002). Whilst inventory plots will continue
to contribute significantly to regional-scale
carbon  assessments,  a  dearth  of  plots  in
tropical regions and the expense of estab-
lishing  new  networks  mean  that  analysts
are increasingly looking to remote-sensing
technology  to  measure  forest  stocks  and
changes (Brown 2002).

The ability of capturing vegetation height
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information allows airborne LiDAR to out-
perform optical satellite imageries in accu-
rately mapping forest AGB, but it is expen-
sive  for  large  area  application.  On  the
other  hand,  recent  studies  demonstrate
that high-resolution satellite imageries can
be used  to  examine  forest  canopy  struc-
ture  (Wang  et  al.  2004,  Pouliot  &  King
2005).  Information  about  individual  tree
crown (ITC) can be extracted by recogniz-
ing individual treetops (Wulder et al. 2002,
Wang et al. 2004) and crown (Leckie et al.
2003,  Wang et al. 2004,  Hirata et al. 2009,
Phua et al. 2014). Treetop locations are usu-
ally extracted from high resolution imagery
using local maximum filtering, an approach
that is most accurate for low density wood-

lands where tree spacing is less than one
individual per 6.6 m2 (Pitkanen 2001). Tree
crowns  are  commonly  delineated  from
high-resolution  satellite  imagery  using  ei-
ther the watershed method (Pouliot & King
2005, Hirata et al. 2009, Phua et al. 2014) or
valley-following method (Leckie et al. 2003,
Gougeon & Leckie 2006), both of which are
founded  on  reflectance  being  highest  at
the top of a crown and decreasing towards
its edges (Culvenor 2003). Tree biomasses
can be calculated from these crown area
estimates. Several studies have found sig-
nificant  relations  between  imagery-esti-
mated crown area and field-measured di-
ameter at breast height (DBH  – Leckie et
al.  2005,  Palace  et  al.  2008,  Hirata  et  al.

2009,  Phua  et  al.  2014),  while  foresters
have published many papers relating DBH
to above-ground biomass (Yamakura et al.
1986,  Bartelink  1996,  Broadbent  et  al.
2008, Basuki et al. 2009, Chave et al. 2014).
Thus,  in  principle  at  least,  carbon density
can be estimated from high-resolution sat-
ellite imagery using an approach analogous
to  traditional  field  inventory  methods.
However,  ITC segmentation is  not  always
very accurate, and small trees are invisible
on an optical remote sensing imagery,  so
biases  and  imprecisions  in  carbon  esti-
mates can arise. Few studies have critically
evaluated  the  performance  of  this  ap-
proach for estimating tropical carbon.

Most  of  these  remote  sensing  studies
emphasized  carbon  stock  estimation  for
REDD+, though ensuring the protection of
livelihoods and biodiversity  is  also central
to  the  mechanism  (Gardner  et  al.  2012,
Murray et al. 2015). There may be risks to
biodiversity that arise directly or indirectly
from the activities under REDD+ (Visseren-
Hamakers et al.  2012),  which needs to be
monitored  as  co-benefits  of  REDD+  pro-
grammes. Monitoring tree species richness
of disturbed tropical forests is complex be-
cause of high spatial heterogeneity (Sheil &
Burslem  2003),  and  comparisons  of  com-
munity similarity  has  thus  been proposed
as a robust and cost effective biodiversity
index for REDD+ (Imai et al. 2012, 2014).

This study aimed to estimate the carbon
density  of  tropical  montane  rainforests
from the IKONOS-2  imagery,  by  consider-
ing forest degradation, and examining the
relationship  between  the estimated AGBp

and biodiversity to ecologically validate the
AGBp estimation. We examined the correla-
tions between crown dimension estimates
extracted from the IKONOS-2 imagery (sat-
ellite-based variables) and field-derived var-
iables for intact and degraded forest types.
Here, intact forest refers to relatively intact
versus degraded  along  a  spectrum  from
heavily  logged to  reduced-impact  logging
and old growth forests. We tested whether
the dissimilarity in community composition
was closely related to dissimilarity in forest
biomass  within  these  ecosystems,  as
would be anticipated from succession the-
ory; if such a link could be found then map-
ping AGB would also allow one important
aspect  of  forest  biodiversity  (namely  dis-
similarity  to  intact  forest)  to  be mapped.
Finally, a tree-level AGB (AGBT) distribution
map was produced for the study area.

Materials and methods

Study area
The study area is part of Ulu Padas area in

the northern part of Borneo, near the inter-
national  border  between  Sabah,  Malaysia
and Kalimantan, Indonesia (Fig. 1). Approxi-
mately 70% of the Ulu Padas area is lower
montane oak-chestnut forest, which is dis-
tributed  at  elevations  between  1150  and
1500 m a.s.l. The terrain of the study area is
undulating to hilly, with steep slopes espe-
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Fig. 1 - The IKONOS-2 imagery of the study area. Green line indicates compartment
boundary of the Sabah Forest Industries (SFI). Polygon incuding yellow points (field
plots) is land belonging to the state. Blue points are field plots collected at compart -
ments P43, P44 and P53 within SFI concession area.
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cially at the western part of the study area.
Of  the  over  1500  specimens  collected  in
our study area, more than one-quarter of
the species correspond to the typical mon-
tane forest families of Fagaceae, Lauraceae
and  Guttiferae.  Only  seven  species  were
from Dipterocarpaceae.

Almost half of the study area is owned by
the  Sabah  state  government,  with  local
people  (in  Long  Mio  and  Long  Pasia  vil-
lages) having a customary right to support
their livelihoods from this land, and practic-
ing slash-and-burn cultivation in it. Much of
this state-land was selectively logged in the
1980s and early 1990s by commercial com-
panies (personal  communication,  Head of
Long Mio village, July, 2012). The other half
of our study area is a concession managed
by Sabah Forest Industries Sdn. Bhd. (SFI),
which was established in 1983 as a govern-
ment-owned  company  to  produce  pulp
and  paper,  then  privatized  in  1993.  SFI
manages  288,623  ha  of  land,  of  which
183,346 ha are zoned as integrated timber
plantations intended for the production of
materials  for  pulp  and  paper.  Currently
about  46,000  ha  of  the  zone  is  planted
with  Acacia  and Eucalyptus  species,  while
104,822  ha  are  managed  under  so-called
natural  forest  management  (NFM).  The
harvest  records  of  SFI  indicate  that  the
study  area  consists  of  an  NFM  area  that
was logged between 1997 and 2002. Since
the  turn  of  the  millennium,  the  Sabah
Forestry  Department  has  required  that
NFM  areas  are  managed  using  reduced
impact logging methods; given the timing
of  the  logging,  it  is  unclear  whether  re-
duced impact logging was employed.

Field data collection
Field data were collected between Nov-

ember 2011 and October 2012. A total of 50
square plots of 30 × 30 m were established
in random locations. In 48 of these plots,
all trees with a DBH > 10 cm were charac-
terized by measuring their DBH, height and
tree position. The remaining two plots con-
sisted  mostly  of  small  trees,  so  all  stems
with DBH > 5 cm were measured. The plot
coordinates were determined by post-pro-
cessing  of  differential  GPS  data  (Ashtech
ProMark 100®, Spectra Precision, Westmin-
ster, CO, USA). Tree height was measured
using TruPulse laser range finder. The tree
positions  were  measured  in  XY  distance
using TruPulse or distometer relative to the
plot’s boundary. Of the 50 plots, 27 were
located  within  the  NFM  areas,  and  the
remainder in the state land. In total, 3709
trees were measured in these plots.

The forests were classified into two cate-
gories  – intact  and  degraded  forests  –
based on field assessment of forest condi-
tion,  floristic  composition  and  land  use
activities.  The  land  use  history  was  ob-
tained from interviews with local villagers
and  forest  management  data  of  the  SFI.
Reduced impact logging areas and village
reserve forest were categorized as intact,
whereas  slash-and-burn  cultivation  and

conventional  logging  areas  were  catego-
rized as degraded. Whilst forests subjected
to  reduced-impact  logging  are  likely  to
exhibit lower biomass than old-growth for-
est, their recovery can be remarkably rapid
(Sheil  &  Burslem  2003)  and  the  species
composition is  much more similar  to  old-
growth forest than that of conventionally
logged forest (Imai et al. 2012); for this rea-
son we include  them  in  the  intact  forest
category.  In  addition,  patches  with  AGB
exceeding  200  Mg  ha-1 were  classified  as
intact forest; this threshold is widely used
to differentiate intact and degraded tropi-
cal forests (Asner 2002, Morel et al. 2012).

We used allometric equations developed
specifically  for  Bornean  rainforest  trees
(Yamakura et al.  1986,  Basuki et al.  2009,
Kenzo et al. 2009). The AGB (kg) of trees in
intact  forests  was  calculated  from  DBH
(cm) as follows (eqn. 1):

using  a  regression  relationship  obtained
for lowland rainforest by  Yamakura et  al.
(1986). This  equation gives biomasses ap-
proximately 25% above those obtained by
the  wood-density  corrected  allometric
model  of  Chave  et  al.  (2014) based  on  a
global dataset. In degraded forests the fol-
lowing  relationship,  developed  for  this
type  of  forest  (Kenzo  et  at.  2009),  was
used (eqn. 2):

Biomass predictions from this formula are
approximately half that given by the intact
forest equation, because the early succes-
sional  species  found  in  these  sites  have
much  lower  wood  density  (~0.35  com-
pared to 0.36-0.81 – Zanne et al. 2009).

Atmospheric and topographic 
correction of satellite imagery

An IKONOS-2 imagery acquired on 28 Feb-
ruary 2010 was used in this  study.  Ortho-
rectification was conducted using the ratio-
nal polynomial coefficients file and the 30-
m resolution Digital Elevation Model of the
Shuttle Radar Topography Mission (SRTM-
DEM) without ground control point (GCP).
The ortho-rectification was assessed by cal-
culating Root Mean Square (RMS) Residual
from GCPs when compared to a Digital Sur-
face Model generated from airborne LiDAR
data.  The  RMS  Residual  was  1.13  m.
IKONOS-2 has four multi-spectral bands of
4-m resolution. The panchromatic band of
IKONOS-2 has a spatial  resolution of  1  m.
The spectral radiance of the multi-spectral
and  panchromatic  bands  was  calculated
using the published calibration values.

Atmospheric correction aims at removing
the scattering and absorption (Vermote et
al. 1997). The scattering effect - mainly due
to path radiance - was corrected using the
dark  object  subtraction  method  (Chavez
1988); the dark object value for each band
was  determined  by  examining  the  lower

end  of  each  histogram:  the  influence  of
haze is indicated by a sharp increase in the
number of pixels at nonzero radiance (Cha-
vez 1988).

In the hilly study area, the brightness val-
ues of pixels vary as a result of differences
in shading. These effects were reduced by
topographic normalization of the IKONOS-
2 imagery, using a non-Lambertian method
with  a  Minnaert  constant  (Smith  et  al.
1980). We resampled the SRTM digital ele-
vation  model  to  the  IKONOS-2  imagery’s
resolution to derive the slope and aspect
for  the  correction.  The  Minnaert  coeffi-
cient  k  describes  the  surface’s  bi-direc-
tional  reflectance  distribution  function,
where the scattering depends on the sur-
face  roughness  (Smith  et  al.  1980).  The
value of  k  varies between 0 and 1,  with 1
representing  a  perfectly  diffuse  reflector
and a small value representing anisotropic
scattering specific to the scene. The pixels
of the intact forest were sampled to deter-
mine the values of k using linear regression
analysis,  and a backward radiance correc-
tion carried out (Smith et al. 1980).

Tree crown delineation
The  geo-  and  atmospherically  corrected

IKONOS  imagery  were  further  processed
before applying a tree-top recognition al-
gorithm.  First,  we  used  principal  compo-
nent pan-sharpening to combine the four
multispectral bands of 4-m resolution with
the  1-m  panchromatic  band.  A  mask  was
then  generated  to  filter  non-vegetated
areas  (bare  land,  clouds  and  cloud  shad-
ows)  from  the  vegetation  we  wished  to
segment. The mask was created by manu-
ally thresholding the normalized difference
vegetation index (NDVI) from the IKONOS
imagery  to  distinguish  vegetation  from
non-vegetation areas, and removing shad-
ows using the panchromatic band (Asner &
Warner 2003). Finally, inverse image of the
pan-sharpened image was generated. The
inverted  pan-sharpened  image  was  input
into  a  watershed  algorithm  to  delineate
individual tree crowns (Hirata et al. 2009).
All  these  analyses  were  conducted  in
ArcGIS 9® (ESRI, Redwood, CA, USA). The
polygons  delineated  using  the  watershed
method were overlaid with the plot  loca-
tion to determine the crown polygons for
each plot.  The segmentation results were
compared with the tree positions from the
plot data to evaluate the crown delineation
in each plot; polygons with centroid within
a plot were considered as trees within that
plot.  Because  lower  canopy  trees  cannot
be  observed  by  the  satellite  sensor,  we
applied the general principle that considers
tree crowns spotted in high-resolution sat-
ellite  data  are  most  likely  to  correspond
with the largest trees observed in the plot
(Palace et al. 2008, Hirata et al. 2009). Say
that n trees are delineated from the image-
ry in a given plot; if the stems measured in
the  plot  are  ranked  from  largest  to  the
smallest  based  on  DBH,  then  the  first  n
trees  in  the  ranking  are  likely  to  corre-
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spond to the remotely sensed trees. Along
with  the  ranked  trees,  we  compared  the
tree  position  and  measured  crown  size
between a delineated crown and field mea-
sured crown. We discarded any delineated
crown  that  was  a  sub-crown  or  included
several crowns.

Crown delineation accuracy was assessed
by comparing automatically  and manually
segmented imageries (Clinton et al. 2010).
A total of 1104 upper-canopy crowns within
35 plots were visually interpreted and digi-
tized  to  assess  the  delineation  accuracy.
The  simplest  test  of  segmentation  accu-
racy is  to compare the number of  “refer-
ence  crowns”  (i.e.,  those  manually  seg-
mented) with the number of automatically
segmented crowns.  Secondly,  the degree
of spatial overlap between crowns can be
determined. The degree to which automat-
ically and manually delineated crown areas
overlap was used to calculate the over-seg-
mentation index (eqn. 3):

where  OS  is  the  oversegmentation  index
(poor = 1, excellent = 0),  X = {xi: i=1,  …,  n}
and  Y  = {yj: j=1,  …,  n}.  X are the automati-
cally  delineated  crowns  and  Y are  the
largest  n reference crowns. For under-seg-
mentation  (US),  it  was  calculated  as  fol-

lows (eqn. 4):

The  overall  quality  of  segmentation  is
then given by the closeness index (D – eqn.
5):

Lower  values  of  D indicate  better  seg-
mentation results.

Estimation of the above-ground 
biomass of trees and carbon density

Segmentation  of  the  IKONOS-2  imagery
generated  three  crown  related  variables:
crown  perimeter  (CP_I)  and  crown  area
(CA_I), and the crown diameter calculated
from the crown area using a circular shape
formula (CD_I).  Pearson’s correlation was
used to test which of these variables was
most  closely  related  to  field-derived  AGB
(or structural variables), and then this vari-
able was used to create a statistical estima-
tion  model  by  least  squares  regression.
Half the plots with delineated tree crown
data  were  selected at  random for  model
building,  whilst  the  other  half  were  kept
for  model  validation.  The estimated  tree-
AGB  was  compared  with  the  observed
tree-AGB from the field measurements.

Tree community composition
We initially identified species of all trees

on  the  plots  by  local  names.  Plant  speci-
mens were then taken for identification at
the herbarium of the Forest Research Cen-
ter in Sandakan, Sabah. We used nonmetric
multidimensional  scaling  (NMDS)  to  ana-
lyze the variation in tree community com-
position  among  plots  (Imai  et  al.  2012,
2014),  which  is  a  nonparametric  method
giving ecologically meaningful measures of
community dissimilarity. The relative basal
area of each species in 50 plots was used
to  calculate  the  dissimilarity  among plots
(Chao et al. 2005). Differences among tree
communities were examined by looking at
the first and second axes of variation from
the ordination analysis; differences among
forest  types  were  analyzed  by  permuta-
tional  multivariate  analysis  of  variance
(PERMANOVA – Anderson 2001), using the
“adonis” function in the “vegan” package
of R (Oksanen et al. 2013).

Results

Tree crown delineation
A total of 1584 upper-canopy tree crowns

were detected within the 50 plots (Tab. 1),
which is almost half of the total number of
trees measured on the ground, suggesting
that  the  majority  of  trees  were  hidden
under the canopy. The closeness index (D)
to the reference tree crowns was 0.36 (i.e.,
the  accuracy  of  segmentation  was  64%).
Delineation  rate  varied  between  forest
types:  it  was  on  average  49%  accurate
(range 28-93%) in intact forest, where trees
were large and densities low, but only 39%
accurate (range 16-78%) in degraded forest
where  there  were  many  small  trees  and
lianas.  The  upper-canopy  trees  we  de-
tected had mean DBH = 29.7 cm (± 1 stan-
dard error of mean of 14.9 cm) and mean
height of 23.2 ± 7.6 m in intact forest. De-
tected  trees  were  much  smaller  in  the
degraded forest, with a mean DBH of 20.9
± 7.6 cm and mean height of 18.5 ± 5.1 m.

Crown  dimension  estimates  of  the  de-
tected  trees  were  compared  to  field-de-
rived variables (Tab. 2). For the intact for-
est,  most  of  the  field-derived  variables
were significantly correlated with the satel-
lite-based variables: DBH was highly corre-
lated with remotely sensed crown dimen-
sion variables (CA_I: r = 0.87; CD_I: r = 0.86;

628 iForest (2017) 10: 625-634

Tab. 1 - Characteristics of the delineated tree crowns for intact and degraded forests (50 plots).

Forest Type Characteristics Minimum Maximum Mean Std. Error Std. Deviation

Intact forest
(26 plots)

Closeness index (%) 0.28 0.93 0.49 0.25 0.17

Field-derived DBH (cm) 10.40 122.10 29.73 0.53 14.86
Field-derived Height (m) 7.60 65.90 23.15 0.27 7.55
Tree density (n ha-1) 300.00 1077.78 605.13 29.82 152.06

Degraded forest
(24 plots)

Closeness index 0.16 0.78 0.39 0.31 0.15

Field-derived DBH (cm) 10.10 80.80 20.90 0.27 7.60

Field-derived Height (m) 5.10 41.80 18.47 0.18 5.12

Tree density (n ha-1) 355.56 3850.00 1220.72 158.72 775.30

Tab. 2 - Correlations between the satellite-based (I) and field-derived (f) estimates of
individual tree characteristics for the intact and degraded forests. (CA_I):  Satellite-
based  crown  area;  (CP_I):  satellite-based  crown  perimeter;  (CD_I):  satellite-based
crown diameter; (Ht_f): field-derived tree height; (DBH_f): field-derived stem diame-
ter; (AGB_f): field-derived above ground biomass. (**): Correlation is significant at the
0.01 level (2-tailed).

Forest Type Estimates CA_I CP_I CD_I Ht_f DBH_f AGB_f

Intact forest
(396 trees in 13 
plots)

CA_I 1 - - - - -

CP_I 0.943** 1 - - - -
CD_I 0.981** 0.960** 1 - - -

Ht_f 0.547** 0.531** 0.572** 1 - -
DBH_f 0.871** 0.836** 0.862** 0.676** 1 -

AGB_f 0.734** 0.669** 0.685** 0.548** 0.915** 1
Degraded forest
(390 trees in 12 
plots)

CA_I 1 - - - - -

CP_I 0.946** 1 - - - -

CD_I 0.976** 0.962** 1 - - -

Ht_f 0.509** 0.501** 0.514** 1 - -

DBH_f 0.811** 0.772** 0.789** 0.684** 1 -

AGB_f 0.711** 0.639** 0.639** 0.486** 0.879** 1
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CP_I: r = 0.84), but field-derived tree height
(Ht_f)  was  more  weakly  correlated  with
satellite-based  variables  (r ranging  from
0.53 to 0.57). Field-derived AGB was mod-
erately correlated with CA_I (r = 0.73), CD_I
(r = 0.69) and CP_I (r = 0.67). Similarly cor-
relations were found for the degraded for-
est:  DBH  was  highly  correlated  with  the
satellite-based  variables  CA_I  (r =  0.81),
CD_I  (r = 0.79) and CP_I (r = 0.77),  while
tree  height  was  less  well  correlated  with
them.  Similarly,  we  only  found  moderate
correlations  between  field-derived  AGB
and with the three satellite-based variables
(r value 0.64-0.71).

Based on these correlation analyses, the
best-performing  satellite-based  variable
(CA_I)  was used as the independent vari-
able in regression models, which was then
used to estimate DBH of all upper-canopy
trees  in  the  intact  and  degraded  forests.
With  field  measurements,  we  found  that
polynomial (R2= 0.68) and linear (R2= 0.67)
regression  functions  only  differed  by  1%.
Therefore, we used a straight line relation-
ship  to  estimate  DBH  from  CA_I  (m2).
DBH_f and CA_I exhibited a strong positive
biophysical relationship (R2 = 0.76 and 0.66
in intact and degraded forests, respectively
– Fig.  2).  The  regression  models  for  esti-

mating the DBH (cm) for the intact (DBHIF)
and the degraded (DBHDF) forests were as
follows (eqn. 6, eqn. 7):

For intact forest DBHIF = 11.3 + 0.427 · CA_I
(R2 =  0.76;  SEs  of  parameters  0.635  and
0.012, respectively),  which was highly sta-
tistically  significant  (F[1, 393]  =  1236,  p <
0.0001). For degraded forest DBHDF = 12.1 +
0.228  · CA_I (R2 = 0.66; SEs of parameters
0.409 and 0.008, respectively), which was
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Fig. 2 - DBH estimation mod-
els using CA_I for the intact

(a) and degraded (b) forests.
Crown area was well corre-

lated with DBH, especially
below 50 cm. Considerable

variations were observed for
DBH > 60 cm. A few old trees

with large DBH (in the
dashed circle in panel a)

have relatively small crown
areas. This reflects the typi-

cal condition of an intact
tropical rainforest.

Fig. 3 - Observed vs. esti-
mated DBH for the intact (a)

and degraded (b) forests.
Overall, DBH was very well

estimated by the models for
both forests. However,

larger trees (DBH > 50 cm for
intact and DBH > 35 cm for

degraded forests) seemed to
be under-estimated.
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DBH IF=0.427(CAI )+11.262

DBHDF=0.228(CAI )+12.114

Tab. 3 - Validation of DBH and tree AGB estimation for intact and degraded forests (based on independent 25 plots of validation
dataset).

Forest Type Parameter Min Max Mean Std. Error Std. Deviation

Intact forest
(387 trees in 13 
plots)

CA_I (m2) 5.00 203.00 43.34 1.54 30.32
Observed DBH (cm) 12.00 94.80 29.74 0.73 14.34
Estimated DBH (cm) 13.40 97.88 29.78 0.66 12.94
Observed AGB (kg tree-1) 67.39 15148.18 1125.51 86.96 1708.46
Estimated AGB (kg tree-1) 89.90 16472.72 1058.00 86.30 1695.48

Degraded forest
(410 trees in 12 
plots)

CA_I (m2) 4.00 179.00 36.90 1.27 25.65
Observed DBH (cm) 11.60 48.80 20.55 0.33 6.55
Estimated DBH (cm) 13.03 52.89 20.57 0.29 5.85
Observed AGB (kg tree-1) 32.00 1050.55 152.01 7.03 142.01
Estimated AGB (kg tree-1) 42.41 1277.49 147.34 6.31 127.39
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also highly statistically  significant  (F[1, 387]  =
743, p < 0.0001).

Plots of observed  vs. estimated DBH for
the intact and degraded forests with vali-
dation datasets (Fig. 3a, Fig. 3b) had slopes
of 0.97 and 0.98, when forced through the
origin, demonstrating that they were virtu-
ally  unbiased.  The mean of  the  observed
DBH values was very similar to the mean of
the estimated values (Tab. 3).

Estimation of above-ground biomass of 
individual trees

Tree AGBT calculated from estimated DBH
values  were  very  similar  to  the  observed

AGBT for  the  intact  and  the  degraded
forests (Tab. 3).  For the intact forest, the
estimated AGBT ranged between 90 kg and
16,473 kg, with a mean of 1,058 kg, which
was  approximately  6%  lower  than  the
observed AGBT for the intact forest. Both
the  minimum  and  maximum  of  the  esti-
mated AGBT for the degraded forest were
much lower than the intact forest: only 42
kg and 1,277 kg. The mean estimated AGBT

of the degraded forest was 147 kg, which
was  about  3%  lower  than  the  observed
AGBT.  Regressions  of  observed  vs. fitted
values (through the origin) had a slope of
0.89  and  0.87  for  intact  and  degraded
forests, respectively (Fig. 4).

AGBP values were calculated by summing
the  AGBT of  all  trees  delineated  per  plot
and  converting  to  Mg  per  hectare.  The
field-derived AGBP for intact and degraded
forests were under-estimated by about 10%
and 20% (Tab. 4), which is greater than the
under-estimation individual tree AGB. This
additional  biomass arises because smaller
trees were not visible in the imagery, and
although they  individually  have  low  AGBT

they are numerous. RMSE of the estimates
were  135  and  20  Mg  ha-1 for  intact  and
degraded forests,  respectively,  represent-
ing 34% and 30% of  the average observed
AGBP.

Biodiversity similarity between intact 
and degraded forests

The first  axis  of  the  biodiversity  ordina-
tion accounted for 53% of  the total  varia-
tion, reflecting a major proportion of  dis-
similarity  among  communities.  There  is  a
significant  relationship  between  ground-
based estimates of AGBP (i.e.,  an indicator
of  forest  degradation)  and  NMDS  axis  1
scores  (Fig.  5a).  Similar  patterns  were
observed  when  plotting  the  imagery-esti-
mated AGBP against the NMDS axis 1 scores
(Fig.  5b). Intact and degraded forests are
clearly differentiated by NMDS: almost all
(92%)  of  the degraded forest  plots  had a
positive axis-1  score,  whilst most (85%) of
the intact forest plots had a negative score
on the NDMS axis 1.

The above-ground biomass distribution 
maps

Object-based classification approach with
the  nearest-neighbour  classifier  was  used
in eCognition software (Trimble) to classify
the segmented IKONOS-2 imagery into in-
tact  and degraded forests  using field  ob-
servations of the forest structure, species
composition and land use history to train
the  classifier.  The  NMDS  results  (Fig.  5a)
were used to calculate overall accuracy and
kappa statistic. Comparing these classifica-
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Tab. 4 - Root-mean-square error (RMSE)
of the AGB estimation for intact and de-
graded  forests  (based  on  25  indepen-
dent  plots  in  the  validation  dataset).
Average  estimation  was  calculated  as
percent  of  the  estimated  AGB  to  the
observed total AGB.

Parameter
Intact
forest

Degraded
forest

RMSE (Mg ha-1) 134.7 20.3

RMSE (%) 33.9 30.4

Average estimation (%) -7.7 -20.7

Fig. 5 - Relationships 
between AGBP and 
NMDS1 for (a) field mea-
sured and (b) remotely 
sensed AGBP.

Fig. 4 - Observed vs. esti-
mated tree AGB for the 
intact (a) and degraded 
(b) forests. The under-
estimation of DBH for 
larger trees had led to 
under-estimation of AGB 
for those trees.
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tions  with  the  field  plot  data,  the overall
accuracy and kappa statistic of the forest
type  classification  were  82.0%  and  0.64,
respectively. The producer’s and user’s ac-
curacies  for  the  intact  and degraded  for-
ests ranged between 75% and 88%. The for-
est  type classification from the IKONOS-2
imagery indicated that the study area had
7036 ha of  intact  forest.  Degraded forest
covered about half the area of intact forest
(3542 ha).

Fig. 6 shows the AGB distribution of the
montane forests at the Ulu Padas area at
tree level. To produce the AGBT map, eqn.
6 and eqn.  7 were used to estimate DBH
for the intact and degraded forest trees in
the  segmented imageries,  and then AGBT

was calculated using the appropriate bio-
mass allometries,  i.e., eqn. 1 (Yamakura et
al. 1986) and eqn. 2 (Kenzo et al. 2009) for
intact forest and degraded forests, respec-
tively. The map shows a strong influence of
land-use activity on the spatial distribution
of AGBT (Fig. 6).  Most of the trees in the
intact  forest  possess  a  large  crown  and
thus have a high AGBT (more green and yel-
low colored polygons in Box A of Fig. 6). In
contrast, most of the trees in the degraded
forest were of a dark shade of blue color,
indicating a lower AGBT (Box B in  Fig.  6).
The  high  AGBT in  the  intact  forest  was
mainly found at forests subject to reduced
impact logging operation, whereas the low
AGBT in  degraded  forest  in  the  stateland
was mainly due to shifting cultivation activ-
ities.

Discussion

Tree centric approaches to biomass 
mapping

Optical imagery collected by satellites has
long  been  regarded  as  unsatisfactory  for
the purposes of estimating the biomass or
degradation status  of  tropical  rain forest,
because  indices  such  as  NDVI,  based  on
the  spectral  characteristics  of  pixels,  are
known to saturate at high biomass (Phua &
Saito 2003,  Lu 2005,  Langner et al.  2012).
Here we show that recognizing individual
trees from high-resolution optical imagery
can overcome these problems. Crown area
has  proven  to  be  a  robust  and  sensitive
variable for estimating DBH – and thence
biomass  –  because  of  the  linear  relation-
ship between crown area and DBH in both
intact  and  degraded  forests  (Phua  et  al.
2014).

Overall, DBH estimation models for intact
and  degraded  montane  rainforests  in
northern Borneo were successful. The esti-
mated AGBP has a mean of 647 Mg ha-1 and
176  Mg  ha-1 for  the  intact  and  degraded
forests, respectively. The small differences
between the means of the estimated and
observed AGBP for both forest types pro-
vided a  convincing argument that  the re-
sults of the satellite-based approach were
consistent,  overall.  The  scatter-plots  be-
tween the estimated and observed values
of AGB at tree level (Fig. 4) and plot level

(Fig. 5) for both forest types confirmed the
consistency of the estimation models. The
RMSE for intact and degraded forests were
34% and 30% of the average observed AGBP,
respectively.  We  also  examined  factors
that  affect  the  RMSE  by  analyzing  the
squared residual  of  the estimates  against
tree  density  per  hectare  and  total  AGB.
Three  outlier  plots  (Fig.  5),  representing
12%  of  the  validation  plots,  with  high
squared residuals were low in tree density
but very high in total AGBP. This was due to
the presence of few old, big trees (DBH >
80 cm) with relatively small crowns. Never-
theless, the slopes of the regression lines
through the origins for the scatter-plots in
Fig.  4 (degraded:  y  =  0.87  · x;  intact:  y  =

0.89 · x) indicated that DBH estimation by
considering forest degradation had a bet-
ter fit compared with the combined forest
types (y = 0.74 · x – Phua et al. 2014). More-
over, the two forest types were clearly dif-
ferent in terms of the statistics of DBH as
well as AGB (Tab. 3).

Because of the extraordinary accuracy of
airborne  LiDAR  in  measuring  canopy
height,  laser  scanning is  the best  current
technology for estimating the carbon den-
sity  of  tropical  forests.  Asner  &  Mascaro
(2014) have shown that simple regression
relationships based on LiDAR estimates of
mean  canopy  height  can  provide  highly
accurate carbon maps (R2 > 0.8), and can
be applied to different regions of the world
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Fig. 6 - Above-ground biomass (AGBT) map of the study area. AGBT of trees (kg) were
assessed through DBH estimation by forest type. Boxes A and B are magnified areas
of AGBT for the intact and degraded forests. Box A shows a typical area logged with
reduced impact logging method, whereas Box B shows an example of regenerated
forest at a shifting cultivation area.
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once adjusted for variation in wood density
and forest packing. Airborne LiDAR surveys
outperform spaceborne optical surveys: in
Malaysian  montane  forests  the  RMSE  of
AGB estimates made by LiDAR was 26% of
average  AGB  (Ioki  et  al.  2014),  which  is
about 8% and 4% lower than the results pre-
sented  here  for  degraded  and  intact  for-
ests. However, provided that space-borne
sensors can deliver unbiased estimates of
AGB,  they  could  be  valuable  at  regional
scales, even if any given pixel is measured
at  lower  precision  than  possible  from  an
aircraft.  This  is  appealing,  given  the  high
cost of LiDAR data acquisition. In addition,
a  new  generation of  small  satellites  with
optical sensors are being launched that will
collect  data  much  more  frequently  than
the current earth observation satellites and
should  thereby  overcome  many  of  the
problems associated with persistent cloud
cover in the tropics.

Recently, Dalponte & Coomes (2016) sug-
gested that a tree-centric approach based
on LiDAR imagery, based on fundamental
principles  of  forest  mensuration,  can  de-
liver results with a similar precision to the
top-canopy-height  method.  Airborne  LiD-
AR delivers more precise results because it
measures both canopy height and canopy
area,  whereas  the  optical  imagery  only
delivers canopy area information, and also
because the 3D point cloud contains much
richer structural information than the opti-
cal  sensors.  Future  research  could  focus
productively on using tree-centric airborne
LiDAR approaches  to better  calibrate  the
spaceborne  optical  sensor  approach  de-
scribed  in  this  paper.  The  relationships
between  satellite-based  crown  variables
and  tree  structural  variables  in  a  tropical
forest  also  require  further  investigation.
DBH is known to have a strong relationship
with  crown  area  (Bartelink  1996)  and
crown diameter (Song et al. 2010) in tem-
perate  forests,  and  a  significant  relation-
ship has been found for an intact forest in
Brazil  (Palace et  al.  2008),  and in a  mon-
tane forest in Malaysia (Phua et al. 2014).
However, a comprehensive analysis has yet
to be published.

Biodiversity mapping in the context of 
REDD+

We have shown that optical imagery can
differentiate between intact and degraded
montane  rainforests.  This  is  important  in
the context of REDD+. Linking biodiversity
monitoring  to  carbon  stock  estimation  is
vital  for  effective  implementation  of
REDD+, but even more critical is what as-
pect of biodiversity needs to be monitored
(Dickson  &  Kapos  2012).  Tree  community
composition is consistent in describing bio-
diversity patterns (Su et al. 2004, Imai et al.
2012) and robust in indicating the response
of tree assemblage to forest degradation
due to anthropogenic disturbances (Imai et
al. 2012,  2014). Measuring tree community
composition  is  cost  effective  for  REDD+,
because only upper canopy trees are to be

measured, making it cheaper than biodiver-
sity  metrics  based  on  wildlife  monitoring
(Imai et al. 2014). Our results demonstrated
that  the  relationship  between  AGB  and
NMDS axis 1  based on field data (Fig. 5a)
can be successfully reconstructed with the
estimated AGB from satellite imagery (Fig.
5b). The intact and degraded forests were
clearly separable at a value lower than the
widely used AGB threshold of 200 Mg ha -1

(Asner 2002,  Morel et al. 2012). The differ-
ence could be due to the fact that the AGB
of  a  montane  rainforest  is  usually  lower
than that of  a lowland rainforest (Aiba &
Kitayama 1999).  Further  in-depth study is
needed to examine the application of this
tree-centric  approach as  well  as  the  AGB
thresholds of forest degradation for differ-
ent natural forest types using high-resolu-
tion satellite remote sensing. More gener-
ally,  there  is  currently  great  interest  in
using  remote  sensing  products  to  help
monitor biodiversity (Skidmore et al. 2015).
Incorporating  remotely  sensed  maps  of
forest disturbance into biodiversity model-
ling efforts  is  likely to increase predictive
power considerably.

Conclusions
Tropical  forest biomass estimation using

high-resolution satellite imageries has been
receiving increasing attention, but its appli-
cation to montane rainforests has not been
adequately dealt with. Our results indicate
that the use of high-resolution satellite im-
agery is useful in developing DBH estima-
tion models, which can be used to estimate
the AGB for intact and degraded montane
rainforests in Northern Borneo. The crown
area from the IKONOS-2 imagery was use-
ful in estimating DBH for the intact and de-
graded forests, from which biomass can be
estimated using published allometric equa-
tions.

Biodiversity safeguarding has been an im-
portant issue in REDD+ implementation in
the tropics. The observed relationship be-
tween AGBP and the NMDS axis 1, an index
of  tree  community  dissimilarity,  showed
that intact and degraded forests were well
differentiated,  allowing  to  use  our  AGBP

maps to map degradation.  Tropical  biodi-
versity should be examined in parallel with
AGB estimation using satellite remote sens-
ing,  because this  kind of  inferential  infor-
mation is useful in guiding REDD+ activities
that are related to conservation of forest
carbon stocks, sustainable management of
forests and enhancement of forest carbon
stocks.
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